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ABSTRACT

Predicting future values of a time series has many practical uses in real-time signal

processing and understanding. This thesis implements an Adaptive Time Delay Neural

Network (ATNN) capable of user-defined degeneration to the more common Time Delay

Neural Network (TDNN). Time delays along axons or at the synapses, which vary in

biological systems, motivate this research. The ATNN/TDNN test results and time series

prediction capabilities are compared to those of the Real-Time Recurrent Learning

(RTRL) algorithm. To show the advantages and disadvantages of using TDNN and

ATNN for prediction versus the RTRL, the networks were applied to two problems:

incommensurate sum of sine waves and financial time series. These data sets represent

examples of nonlinear data with known and unknown mathematical functions,

respectively. Although the RTRL predicted better than the ATNN for a known

predictable function, this ATNN approach proved competitive in determining the

direction of future values for this function and even outperforms the RTRL on the more

difficult prediction task. The ATNN program, developed in C++ with an object-oriented

framework, also takes much less computation time than the RTRL during training.
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PREDICTING NONLINEAR TIME SERIES

I. INTRODUCTION

Most solutions to life's real world problems involve some sort of function prediction.

Examining real world processes shows nature very rarely produces simple linear, easily

mathematically modeled, functions. Many functions of practical interest even the basic

sine wave are nonlinear. Humans possess an innate ability to assimilate information, make

some sense of the information (probably in some nonlinear way of which little or nothing

is known), and predict some useful outcome or required action. People constantly

perform prediction involving trajectories, like catching a ball or avoiding a collision with

other vehicles while driving, as background tasks. The human brain solves these real

world problems easily, and in time to make the prediction useful, because they involve a

relatively low order of dimensionality. A trajectory usually involves at most three

dimensional time-space relationships. Nonlinear time series functions present more

difficult real world problems, though. The dimensionality quickly becomes intractable

even for the human brain. Many, seemingly extraneous, factors affect these functions

forcing them towards unpredictability. Given a complex function separated into a

superposition of more simple, predictable functions, the human brain's ability to predict

completely diminishes when the complex time series function involves more than two

sinusoidal functions with an irrational ratio of their frequencies (i.e., non periodic time

series functions) [15]. People don't like to (actively) predict [7], especially these

unfamiliar complex functions. For this reason almost all scientific disciplines pursue



mathematical or computer models to accurately predict the behavior of complex nonlinear

processes inherent to their work.

Engineers trying to model real world processes, usually approximate these non-

linear processes as a superposition of linearly separable functions. These nonlinear

processes, or functions, are broken into as few linear parts as possible to still obtain

acceptable results. By the time engineering approximations are made, too much

information is sometimes thrown away and some engineers and scientists feel they must

keep all that's left. Modeling of this type usually results in poor representations of the

original functions because engineers model the smooth (nonlinear) transitions that nature

makes by too few of these linear pieces. Meteorologists trying to predict the weather,

economists trying to predict market behavior, and physicists attempting to track turbulent

flow of fluids, all using ever faster supercomputers, frequently produce unsatisfactory

results [5]. This strategy lasted through the years, probably, because it was the best

available.

However, for today, even large numbers of supercomputers working in parallel can

not accurately reproduce the processing capabilities of an incredible 3 pound piece of meat

called the human brain. This biologically motivated processing may never be achievable

by man-made machines, but the ideas behind Artificial Neural Networks (ANN) offer

some hope. They possess, as might be imagined the brain does, the ability to map

relationships in a nonlinear way. It is time for conventional engineers to rethink their "old"

strategies. Today's technologies obtain an abundance of information quickly and easily,

and current machines store and sort this historical information well. It is the information

processing techniques that seem to be lacking. Maybe engineers should take a lesson from

Mother Nature, keeping only the best parts, or features, of the information like in Nature's

rule: Survival of the Fittest. Working smarter almost always produces better results
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than working harder. These fittest features would store only important and often used

information for later processing much as the human brain uses or loses memory.

Human brain development is an interesting phenomenon. Jerison points out,

It's estimated that it took around one million years to make the human brain what it is
today, given this is about the time when a rapid increase in brain size compared to
body weight began in the hominid lineage. There is no evidence of a change in brain
size versus body weight for any other mammals within the past five million years. [6]

The modeling of brain functions does not have to start at the beginning, though. Today's

electronic, chemical, and imaging technology allows us to look deeper inside the human

skull and into the brain. The human brain, most people think, is the most powerful

information processor in creation. Therefore, try to more precisely model the best. In

other words, if one models and strives for excellence, he is destined to achieve excellence

[13], or better still

"...if you refuse to accept anything but the best, you very often get it."

- W. Somerset Maugham

Consider moving up to a better model of the real world; stop accepting methods of

the past. Today's conventional sensors provide enough information for a human to predict

an event outcome given relatively low dimensionality, but automatic real-time prediction,

using today's computer architectures, is often too slow and computationally expensive.

Thus, non real-time prediction, in most applications, equates to present state estimation,

not to prediction. Webster [11] defines

to predict - is to declare in advance; esp.: foretell on the basis of observation,
experience, or scientific reason.
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So, this thesis defines nonlinear function prediction as the declaration of a future value of

the given function, based on that function's history.

Work performed by Capt Randall L. Lindsey [10] shows properly trained Recurrent

Neural Networks are successful in applications involving time dependencies, including

function prediction. A recently completed competition, at the Santa Fe Institute, also

found Recurrent Neural Networks among the best, but a Time Delay Neural Network

(TDNN) algorithm won the time series prediction competition [21]. Another recent paper

discusses an Adaptive Time-delay Neural Network (ATNN) algorithm for prediction [9].

This seems a logical improvement over the TDNNs.

1.1 Problem

This thesis focuses on solving the nonlinear function prediction problem by

developing an ATNN and TDNN program in C++. For various types of input data, the

results show the comparison of these networks with the subgrouped RTRL in terms of

testing and training accuracy versus training time.

1.2 Background

Neural network publications span multiple disciplines: neurobiology, physics,

psychology, medical scien., mathematics, computer science, and engineering. Since its

revival in the mid 1980's, neural network technology has been changing too rapidly to

include a complete summary of it here. Searching current databases for a more narrow

review including the just a few important features for nonlinear function prediction yields a

manageable review. This Literature Review, as presented in Chapter 11, highlights the

following features: Real-Time Recurrent Learning (RTRL) algorithms, subgrouped

RTRL, TDNNs, and ATNNs.
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ANN technology continues to improve by leaps and bounds. Meanwhile researchers

and engineers apply the state-of-the-art algorithms to solve time-series prediction

problems. The ANNs, above, when properly trained, solve many time series tasks and are

useful applications.

1.3 Assumptions

This thesis assumes the input vectors are actual past time samples of the process

under study. The only input feature available to the networks will be this historical time

sequence data of the process itself. Therefore, feature extraction from an input pattern is

not addressed here, but successful selection of the ANN parameters during the training

and testing periods is essential for each algorithm. The processes are assumed to be

predictable; that is, they are not purely random.

1.4 Scope

This thesis will present an Adaptive Time-delay Neural Network for time series

prediction of complex functions and compare the results to the TDNN and the Real Time

Recurrent Learning (RTRL) algorithm.

1.5 Approach

The proposed plan is to create a nonlinear function prediction capability in five

steps. First, create the Adaptive Time-delay Neural Network program. This ATNN

algorithm, coded in an object-oriented C++ programming framework, configures to the

more conventional fixed Time-delay Neural Network (TDNN) or Error-Backpropagation

(BP) algorithms with the appropriate user-defined network parameters. Second,

implement a RTRL algorithm to solve a few specific time series function problems.
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Third, modify the ATNN into a TDNN and train then test for solving time series

prediction with fixed time delays. Fourth, train and test the full ATNN algorithm with

adaptive time-delays as well as weights for solving the prediction problem. Finally,

compare all the algorithms in terms of training and testing accuracy versus number of

training cycles, or epochs.

This chapter provides a brief perspective, the goal of this thesis, and then outlines

the approach to studying this prediction problem. The next chapter will review some of

the background material essential to understanding the current ANNs at the forefront of

complex function prediction. Chapter III develops the algorithm for the ATNN (and

TDNN) while Chapter IV presents results of applying time series data to the RTRL

network as well as the ATNN and TDNN. Chapter V presents conclusions and

recommends direction of further study with these networks.
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II. LITERATURE REVIEW

2.1 Introduction

This literature review summarizes the current state of artificial neural networks

(ANN) for solving time dependent processes. Biological neural networks quickly and

easily process temporal information; artificial neural networks should do the same.

Modeled from biological research, artificial neural networks provide a heuristic approach

to solving problems that could prove quite successful in areas of speech processing and

image recognition [8]. Of the many known varieties of ANNs, literature suggests only a

few of the major classes are adequate for difficult temporal processing and prediction

tasks. One class, the time delay neural network (TDNN), incorporates embedded time

delays on the inputs. Another, known as the recurrent neural network, uses time delayed

network outputs that feedback as inputs to encode and learn temporal sequences. Time

dependent processes govern much of the real world. Thus, properly trained artificial

neural networks, both TDNN and recurrent, could prove very successful in applications

involving time dependencies.

Publications in the field of neural networks span all the disciplines of science:

neurobiology, physics, psychology, medical science, mathematics, computer science, and

engineering. As such, a thorough summary of neural network technology would contain

numerous volumes. However, a sampling of current literature, centered on the topics of

time series prediction; TDNNs, and recurrent backpropagation neural networks, yields a

more focused review.

The scope of this review focuses on current literature detailing studies of nonlinear

time series function prediction. In particular, an even more narrow focus on uses of

TDNNs and recurrent backpropagation neural network technology reveals a tremendous

effort exists to solve problems of this nature. This review contains a short background on
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basic neural network theory to aid the reader's comprehension. In addition, this review

highlights the real-time recurrent learning (RTRL) algorithm, subgrouped RTRL, TDNN

algorithm, and finally, an Adaptive Time Delay Neural Network (ATNN). These

algorithms summarize improvements in neural network technology as applied to function

prediction.

2.2 Background

Biological concepts motivate the application of artificial neural networks to

electronic machines. Artificial neural networks attempt to copy or mimic the response of a

true biological neuron, the most basic processing element of the brain [ 14].

During the late 1950's, Rosenblatt invented a new class of machines offering, as

many researchers thought, a natural and powerful model of machine learning [16]. This

basic model, called the perceptron, consists of an array of input sensory nodes randomly

connected to a second array of associative nodes. The connections, called weights,

randomly range from -1 to 1. Each secondary node produces an output when activated

by enough of the sensory nodes connected to it. Sensory nodes capture outside

information for the machine, and associative nodes input the information to the machine.

The output, or response, of the perceptron equals a proportional weighted sum of

the associative nodes' responses. In other words, if xi denotes the response of the ith

associative node and wi denotes the corresponding connection weight, then the activation

S of the next node with n associative input nodes is

s, = Fwflx, (2.1)
i--I

and the output, or response R, of this next node is given as

8



R f (Xvdjx

Thus for a positive R, the stimulus belongs to class 1, and for a negative R, the stimulus

belongs to class 2. In its most basic form, the perceptron simply implements a linear

decision function f(x). The perceptron learns by changing the connection weights to

minimize the total response error. The difference between the desired output and the

actual computed response of the node defines the nodal error. In equation form,

en=dn-Rn

where en denotes error of node n, and dn denotes the desired value of node n. Therefore,

the total response error equals the summation of the squared nodal errors over the entire

length of the data set (epoch).

In most applications, a differentiable function, usually the logistic squashing

function (sigmoid), operates on the output of the network. When the sigmoid response,

given by

I
(2.2)

operates on the input, the response becomes the weighted sum of the inputs, including a

bias term 0. Thus the resulting output becznes

Rj = fj (±Xw.xi +9j), (2.3)
9=1
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and Figure 1 shows a typical network node while Figure 2 details the output of the

sigmoid.

S2)

Figure 1: Rosenblatt's perceptmron model.

0.5-

0

-5 0 5
sfimulus

Figure 2: A typical sigmoid function with a =1.

Many other architectures propose extensions to this basic concept introduced by

Rosenblatt. Multilayer perceptrons, feedforward neural networks, error-backpropagation

networks, and recurrent backpropagation networks name just a few. Error-

backpropagation, discovered by Werbos in 1974 [22] and independently by Parker in 1982

[12], refers to the method of updating the interconnection weights; that is by propagating

backward from the output to the input and changing each connection weight minimizes the

total error. Feedforward neural nets refer to connection schemes where the direction of

information flow is strictly from input to the next layer passing forward through successive

10



layers to the output. Error passes backward to adjust the weights during training but does

not add information to any given node. Think of error-backpropagation as weight

modification rather than unit activation. In other words, no "information" flows (as input)

from higher-level to lower-level nodes. Many texts contain the derivation of the error

backpropagation algorithm[14]. A purely feedforward network would only react to

external input. Feedforward artificial neural networks typically solve recognition problems

by separating spatial regions. However, they can also "learn" relationships governing the

generation of a time series, then use that "knowledge" to predict future values of the time

series [17]. Building on that idea, recent time delay neural networks spatially present a

fixed time "window" of the sequence to the network inputs. Thus, the TDNN

architectures utilize a fixed number of the actual time sequence values as inputs instead of

the recurrent network architecture where time delayed network outputs feedback to

inputs.

Feedback, sometimes called internal input, endows a network with a couple of

significant features: (a) incorporates multiple time scales into the processing nodes, (b)

processes temporal sequences of inputs [3]. A recurrently connected neural network

contains feedback loops from previous states (timed inputs) as well as the

backpropagation. The next sequentially timed input uses these feedback outputs to create

a predictive output at time t + I based on the current input and the previous output.

Information about past inputs is manifest through the learning modified results in this

previous output. As with the input vector, the feedback connections each have their own

adaptable weights. These recurrent weights change, through backpropagation, to

minimize the total error over the epoch length. Figure 3 shows a general layout of a

recurrent neural network. Notice that the current input vector at time t includes a bias

input (always equal to one), the external inputs, and the previous network's output. A

11



brief look at some of the work accomplished by applying various network designs to time

series data follows.

Output Nodes yl(t+l) y2(t+l) y3(t+l) y4(t+1) Hidden nodes

x~t) -> Bias xl(t) x2(t) yl(t) y2ft) y3(t) y4(t)

external input data recurrent output values

Figure 3: Basic RTRL architecture, with two outputs, two hidden nodes, and

two inputs [101.

2.3 Real-Time Recurrent Learning (RTRL)

Williams and Zipser describe a real-time learning algorithm for training completely

recurrent, continually updated networks to learn temporal tasks [23]. This technique uses

uniform starting configurations that contain no previously known information about the

temporal nature of the task. It presents a gradient-following learning algorithm that tracks

the total network error along a trajectory minimizing this total error. Its two prime

advantages include not requiring a precisely defined training interval and operating while

the system is running. The algorithm's main disadvantage consists of requiring nonlocal

communication during training making it computationally intensive. Yet, this algorithm,

called the real-time recurrent learning (RTRL) algorithm, allows recurrently connected

12



networks to learn complex tasks that require the retention of information over definite or

indefinite time periods.

2.4 Subgrouped RTRL

Whereas the previously discussed RTRL algorithm shows great power and

generality, its disadvantage (CPU intensive) presents a potential problem. Zipser

addresses this problem by proposing an improved technique which reduces the amount of

computation time required by RTRL without changes in the network connectivity called

network subgrouping [24]. Subnets, which divide the original network for the purpose of

error backpropagation, leave the network undivided for forward propagation of

activations. This means that, during training, subgroups form only when error propagates

backward through the network's connection weights. During normal feedforward

propagation, the network remains filly connected. This subgrouped RTRL algorithm is

10 times faster when compared to the previous RTRL method performing a specific

learning task [24]. It suffers, however, in that each subgroup now has less memory than

the original RTRL. Zipser suggests compensating for this by using more hidden nodes.

2.5 Time Delay Neural Networks (TDNN)

TDNNs have recently been applied for use in phoneme classification [18]. Figure 4

shows a typical TDNN architecture used for this classification problem. Waibel used this

network, with some success, for the identification of phonemes in Japanese. However,

work done in conjunction with a recent competition held at the Santa Fe Institute proves

the usefulness of TDNNs for solving complex time series prediction tasks [21]. A Finite

Impulse Response (FIR) neural network [19], equivalent to TDNN, won the competition

with recurrent networks finishing close behind [21].

13



yl(t) y2(t)

Bias xl(t-2) x2(t-2) xl(t-1) x2(t-1) x1(t) x2(t)

Figure 4: Typical TDNN network where input data is shifted along inputs to the net.

This approach models the biological synapse as a FIR linear filter. The article, also,

derives a temporal generalization of the familiar error backpropagation algorithm. This

feedforward TDNN method replaces the scalars of Equation 2.3 with vectors representing

the weighted sum of delayed samples of the inputs. The response becomes

R,(k) = f (Y FV,(k)) (2.4)

where Wy specifies the weight associated with the output of node i to the input of nodej

in the next layer and k is the discrete time index. The temporal backpropagation algorithm

is similar to the Adaptive Time Delay Neural Network developed in Chapter mH. This

algorithm allows for more computational efficiency since the number of operations grows

linearly with the number of layers in the network.
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2.6 Adapive Time DeMay Neural Networks (A TNN)

Another article presents the logical next step to follow the TDNN [9]. It describes

an improved learning algorithm based on gradient-descent for updating the time delays as

well as the synaptic weights. The delays in a biological system occur along axons, due to

factors such as axon length and insulation (myelin sheath), and at the synapses due to the

biochemical processes. This adaptation method provides more flexibility so the network

can attain the optimal time delays associated with the weight to achieve more accuracy

than with fixed delays determined prior to training or by trial-and-error. As a result, an

ATNN network proves slightly better than TDNN because of a better match between

choice of time delay values and the temporal location of the important information in the

input patterns. This thesis will focus on the development of C++ code to implement this

ATNN algorithm and then compare the performance of it with TDNN, by fixing the

weights of the ATNN, and subgrouped RTRL.

2.7 Summary

As technology improves, engineers and other researchers discover new and

innovative algorithms for solving time-dependent problems. All of these algorithms

discussed here possess the ability, if properly trained, to tackle and solve many difficult

temporal tasks. More great strides in advancing neural network technology require

still further research. Most of these algorithms exist in digital software form. Some

routines cannot be implemented in contemporary hardware. Therefore, further research

will determine whether or not particular networks become physical hardware elements,

thus greatly increasing their speed and utility.

A theme that carries throughout this thesis concerns time and the necessity for

network models to reflect the fundamental and essential temporal nature of actual nervous

systems. Short-term memory allows present access to the recent past, and longer-term

15



memory relates to the more remote past. To respond to temporal processes, the nervous

system may require a temporal representation. If so, ANNs should also be capable of

representing processes extended in time. Captain Randall Lindsey investigated RTRL

algorithms for predicting time series functions [10]. Captain Jeffrey Dean modified

Lindsey's RTRL code for the subgrouped RTRL algorithm, which this thesis uses due to

its increased performance. The next chapter develops an ATNN algorithm (and TDNN

algorithm by user definitions) and code for comparison to the prediction abilities of the

recurrent networks such as subgrouped RTRL.
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III. METHODOLOGY

3.1 Introduction

The recent works covered in the Literature Review pertaining to time series function

prediction, provides a broad overview of the types of artificial neural networks most

commonly used in today's prediction research. This thesis effort encodes the Adaptive

Time Delay Neural Network (ATNN). From this code, the user defines either an ATNN,

Time Delay Neural Network (TDNN) or a Backpropagation network (BP) as desired.

The resulting network gets tested in both the ATNN and TDNN modes for accurate time

series function prediction. As stated earlier, a previous AFIT thesis by Lindsey encodes

the Real-Time Recurrent Learning (RTRL) algorithm and yet another AFIT thesis, by

Capt Jeffrey Dean currently near completion, modifies Lindsey's code extending it to the

subgrouped RTRL case. Since the subgrouped RTRL algorithm is basically the same as

RTRL but is less computationally intensive, this thesis compares subgrouped RTRL with

the ATNN and TDNN prediction schemes developed here.

This methodology chapter develops the ATNN algorithm for performing time series

function prediction. The explanation details the basic theory and interpretation of the

ATNN algorithm used in this thesis. In addition, this chapter discusses how to use the

code for ATNN learning versus TDNN or Error-Backpropagation Network learning (the

later two are special cases of the more general ATNN algorithm). Finally, this chapter

discusses the training and testing procedures and applies them to two specific problems.

3.2 A TNN Algorithm Development

This Adaptive Time Delay Neural Network (ATNN) generalizes the common error-

backpropagation, gradient descent method to allow for adapting of time delays as well as

the weights during training. Time delays allow each node in the artificial neural network
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to more closely model what is understood of true biological processes. Studies show time

delays exist in the biological nervous system due to impulse transmission, caused by the

varied lengths and insulation of axons, and cell membrane excitation, caused by the

temporal properties at synapses [4]. Time delay network nodes take into account not only

the information from previous layers (as in standard feedforword networks), but they also

remember some of the past information in the delays associated with each interconnection.

This ATNN algorithm interpretation provides a variable length buffer (like a memory) for

each input feature in the data set instead of the spatio-temporal separation method

described for TDNNs in Section 2.5 (Figure 4).

3.2.1 NETWORK ARCHITECTURE

The interconnection scheme for ATNN nodes includes n connections between

previous node i and the next node j. Each connection contains its own time delay and

associated weight. Attempting to simplify the variable indexing, the order of indices

remains constant throughout this thesis. The first index corresponds to the next node

which the connection goes to, the second index corresponds to the previous node from

which the connection comes, and the third index gives the particular time delay connection

between the two nodes. If only one index appears on a variable, j relates to the output of

the next node and i relates to the input from the previous node. In their article, Lin and

others [9] call this interconnection scheme between nodes a delay block as shown in

Figure 5 where T., and wj,,l are the independent time delays and weights for each nth

interconnection of the block. Summation of the activations into each node occurs the

same as in the basic Rosenblatt perceptron discussed earlier. However, now the

activations result both from the input of previous nodes and the n time delay

interconnections for each of these previous nodes.
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Figure 5: Delay block for ATNN [9]

Thus, nodej receives the total activation given in the following equation

N KC

Si (.) EE A A0 - j&)(3.1)

where N is the number of input features and K is a maximum number of time delay

interconnections between nodes. In the equation, a, (th - k) is the activation from the

output of a previous node i (or an external input sample) delayed by qiik For simplicity,

each node in the network then processes the weighted sum through the same sigmoid

function as described by Equation 2.2.

A user definition file completely specifies the desired ATNN architecture. This file

consists of basic variables used in most artificial neural network configurations (i.e.,

numbers of input (n), hidden (q), and output (p) nodes, weights update learning rate (71),

maximum number of iterations through the training data (epochs), and range of random

initialization values for matrices). The file also includes the ATNN specific variables (i.e.,

time delay update learning rate (112), momentum, maximum number of time delays (K),

epoch learning flag - to update after each epoch instead of after each input pattern,

tolerance - user defined acceptable difference between desired and network output, time

interval between data points, and TDNN learning flag - for fixing time delays).
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The encoded network structure allows for only one layer of hidden nodes, thus,

two layers of weights and two layers of time delays. This ATNN architecture uses the

delay block idea to connect between any two nodes and the nodes fully connect from one

layer to every node in the next layer. This might not be biologically correct but the

learned weight values in the ANN give relative strength to these interconnections. Thus,

the unused interconnections obtain a very low weighting. Each connection can also have

its own independent time delay. Figure 6 shows a two layer ATNN example (i.e., two

layers of delay blocks) for clarity.

inipu I
inpu i ••node I node I

inpt u node q . node p

INPUT HIDDEN OUTPUTF
FEAUR NODES NODES
FEATURES

(or TIME PROCESSES)

Figure 6: Two Layered ATNN [91

3.2.2 LEARNING ALGORITHM

The derivation of the ATNN algorithm presented here follows that of the article by

Lin [9]. This thesis shows only the most important equations for understanding the

algorithm. Many texts contain the complete derivation of Error-Backpropagation weight

update rule [14], and the article [9] derives the time delay update rule as found in

Appendix A for completeness.
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First define an instantaneous error measure (MSE) by

E(t,) = 4 (d1 (t,)-aj (I))2 (3.2)
jEP

where there are P output nodes with computed values, aj(tn), and dj(tn) denotes the

desired output of nodej at time in. In this thesis, the weights and time delays update after

each input pattern according to the respective error gradients

AwE - (- : °(1.) (3.3)

A•jk--l 2 o-dE(Q (3.4)

where ti, and 'q2 are the learning rates.

Let

(d, (t) -aQ(t.))f'(Si (Q)) ifj is an output node
8j(I.) = {(I p•p __- S~t)w q(t,))f'(SJ~t)) ifjis a hidden node (3.5)

and

-(dj(tQ)-aj(tQ))f'(Sj(t,)) ifj is an output node
Pi K-•tr t,)wm (t.)f (Sj(t) ifjis a hidden node (3.6)

where P now is the number of nodes in the next layer all terms are defined as before and K

is the maximum number of time delays. Then the learning rules can be summarized as

follows:

AWAk =n 6j (t.)a, (I - ••jk) (3.7)

Azri= 7l2 p, (t)wja'(t1 - :,k). (3.8)
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Because the node activation varies with time, the error gradient with respect to time

requires calculation of this derivative. According to the Mean Value theorem of

differential calculus, the derivative of the node activation in Equation 3.8 approximates to

a,(t.- T&) a(t.+.)- ra(t,-k) (3.9)
[. 2rif t, -T t. =t ,, * • 0
I 2r D ~ *

where r is the time step between data points. The time delays are, in p -ral, zero or

positive real numbers. However, here the update is based on time delays rounded to an

integer number of time steps.

An example of how to interpret these learning rules will be helpful for the unfamiliar

reader. For instance substituting Equation 3.6 into Equation 3.8 and dropping subscripts,

the time delay update rule for a hidden layer simplifies to

A•i = 12 YIP"Y [(d - a)a(1 -a)W2]h(1 -h)Wl(a').

The above reads as follows:

the (learning rate) times the sum over all (output nodes) and (time delays) of

[(desired - net output)*(net output)*(1-net output)*(weights in layer 2)] times

(hidden activation) times (1- hidden activation) times (weights of layer 1) times

(derivative of inp -t features).

The other instances of lee': ing rules follow a similar interpretation. Given this overview

of the ATNN algorithm itselU the next section explains the code developed for this thesis

effort.
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3.3 A TNN Code Development

This ATNN code uses an object-oriented programming (OOP) structure in C++.

C++ and OOP are becoming the standard for software development. The C++ flexibility

and reusable "objects" provide an environment to more easily develop and implement

various artificial neural networks. Even the C programming language does not yet offer a

well-developed tool kit for implementing artificial neural network algorithms. Adam Blum

developed an object-oriented framework, on which this ATNN code is based, for building

neural networks in C++ [1]. C++ offers all the advantages of C but also supports object-

oriented programming readily. Programming objects and using them to build a

framework, much like a carpenter uses tools to build a frame house, allows for more

flexible and innovative designs. Most of the applications and developments in Blum's

book deal with spatial problem solving. This thesis effort, on the other hand, designs new

methods and classes for representing time series data and solving time dependent process

problems. The new objects allow incorporation of 3-dimensional matrices, buffered inputs

to nodes, propagation and backpropagation through time, activation derivatives, and time

delay optimization learning. A new class, ATNN, encompasses all these methods that

operate together to form the ATNN algorithm. The ATNN class is a specialization of the

net class developed by Blum. Figure 7 shows the class hierarchy for an ATNN.

Making the ATNN code executable requires several definition and source code files

for the various classes used to build an ATNN. The definition files include: atnn.h, net.h,

and vecmat.h. The source code files include: testatnn.cc, atnn.cc, net.cc, and vecmat.cc.

Complete listings for the required files to compile and use the ATNN program are

included as Appendix C. The ATNN code was developed using Turbo C++ 3.0 on an

IBM/compatible 486 system. Although it successfully compiles using Turbo C++ 3.0,

training is quite slow on this single processor system. For that reason, the ATNNs
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described in this thesis were trained and tested using the Silicon Graphics systems (IRIS

4D and ONYX).

The details of using the interactive ATNN program are contained in Appendix B.

The program is interactive in that it allows the user to set a maximum number of epochs or

target minus network output tolerance for determining program completion, but the

training process may be suspended (by pressing the ESC key on the Silicon Graphics or

any key on a PC) and saved at any point. Subsequent training automatically resumes from

the stored network information (located in the associated .WTS file). This allows for

testing at different points during the training process which helps in optimizing training.
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3.4 TDNN and BP Implementation

The Time Delay Neural Network and Error-Backpropagation algorithms can be

viewed as special cases of the ATNN algorithm. Fixing the time delays (i.e., not allowing

them to update and learn), while still allowing the weights to update, results in a network

equivalent to the typical TDNN. By fixing the time delays and setting the maximum

number of delays to one (MAXNUMTAU I in. DEF file), the Error-Backpropagation

algorithm (where jik = 0) results. In this ATNN code, the automatically buffered inputs

still exist, thus each input feature only requires one input node for the TDNN window of

delayed inputs. This thesis uses only the TDNN special case. The network definition file

(.DEF file) sets the TDNN condition by simply setting TDNN I for the fixed time delays

case. If TDNN 0, time delays will update and learn as in the general ATNN case.

3.5 RTRL Implementation

This section describes how another type artificial neural network, the subgrouped

Real-Time Recurrent Learning (RTRL) algorithm, was implemented for comparison in this

thesis. The RECNET code, originally written by Lindsey and, then, modified by Dean, is

used much the same as described in Appendix A of Lindsey's thesis [10]. The

"parameters.dat" file includes more network definitions, each of which is explained in a

comments section of the file itself, due to Dean's modifications. The data file structure

remains the same as that in Lindsey's code.

The RECNET code requires a different data format than the ATNN code. The data

file structure for using RECNET includes on the top line: the number of input features,

number of external output nodes, the total number of nodes (external output plus hidden),

and the number of input-output pattern pairs. All subsequent fines contain the input

features (# columns of these equates to the first number in the top line) and desired
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outputs (# columns of these equals the second number in the top line) all separated only by

spaces. Each line corresponds to a separate timed event in the time series process.

RECNET stores its output and error information in a manner such that each

different network configuration and data set requires its own directory. Otherwise, the

resulting network information from one network overwrites the previous output files.

3.6 Applkadons

Time series function prediction was attempted for two specific applications. The

first application chosen was a sum of incommensurate sine waves. This means the ratio of

the sine wave frequencies is an irrational number resulting in a nonperiodic function. In

his thesis, Captain James Stright provides a measure of the randomness of this function

called the fractal dimension [17]. Fractal dimension, as determined by the Grassberger-

Procaccia method used by Stright, begins at 1.0 for a straight line. Very smooth curving

data has a low fractal dimension and more "ragged" data has a higher fractal dimension..

For the incommensurate sine wave function defined by

y(t) = [2 + sin (N/t) + sin (N/r3t)]2, (3.10)

the Grassberger-Procaccia method yields a fractal dimension of 1.7. Figure 8 shows a

graph of a small sample ofy(t) from equation 3.10. A higher sample rate would make this

data smoother, however this is the data used for testing and training here. This data

should be of low enough dimensionality that artificial neural network prediction is

learnable with a reasonable number of nodes and/or time delays. Stright's predictor

network obtained an average MSE of 0.349 from the instantaneous MSE of the points

given in his thesis. This result though was from a multilayer perceptron implementation
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Figure 8: Sum of Two Incommensurate Sine Waves

and was only trained for 1200 epochs,%, ith the previous 3 inputs and a total of 20 hidden

nodes (15 in one layer and 5 in another). Although this is a benchmark for this

application, only the three networks explicitly discussed in this thesis will be compared.

Chapter IV discusses the results of this application in terms of the function prediction

comparisons.

The second application considered for this thesis contains data even more complex

than the incommensurate sine wave data. Data with fractal dimension between 1.95 and

7.5 is considered. Prediction of nonlinear time series functions such as pilot head motion

given the time series position (in x, y, z 3D Euclidean distance space) or acceleration data

are of particular importance to the Air Force. These type functions probably have an

order of dimension near or within that of chaotic data. But if a prediction network

predicts future values of chaotic data more accurately than 50 percent of the time, it is

beating chance and should perform quite well on head motion data. Since a readily

available source of data exists in the area, a set of financial data (British pound opening

price data) was chosen as an example data set that is usually considered to be in this

category of chaotic data. Figure 9 shows a sample of the data set used for this
28



application. It is, definitely, a good example of a nonlinear, dynamic process which can

not be predicted consistently and accurately by the human brain. The equations for market

price processes are currently unknown, but in fact the process is assumed not to be

random. The equations are most likely nonlinear, stochastic, delay-differential equations

because of market response to certain real-world inputs. [2]

Comparison of similarly configured networks and a discussion of the abilities of

each type network to learn these application tasks is presented in Chapter IV.
OPENING PRICE

200
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5oo 1000
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Figure 9: Financial times series data

3.7 Training and Testing the Algorithms

Each of the data sets was scaled by the ATNN code. However, normalizing the

data (i.e., zero mean divided by the standard deviation) prior to input allows the networks

to learn without saturating the sigmoid functions. Thus, the network prediction should

more accurately follow the desired output. Experience shows that prediction of real world

processes must be made over very short time frames because the causal forces driving
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these processes change so rapidly. For that reason, this thesis only attempts to predict one

time step ahead.

Initially, each of the three network types (i.e., RTRL, TDNN, and ATNN) trained

on each of the applications. Using one input, one output, various numbers of hidden

nodes, and various time delays, a configuration evolved, for each training set, such that the

networks learn to predict reasonably well. With these network configurations established,

training commenced to a point where the error dropped considerably and then leveled. In

the RTRL algorithm, the learning rate automatically decays by a factor of 2 once the MSE

levels. Therefore, the ATNN and TDNN training runs were continued in the same manner

through the interactive program. Testing was performed at several intermediate points to

ensure the networks were indeed learning. From the point where the MSE began to drop

significantly, the networks were trained only a few iterations at a time with testing in

between the training runs. The goal of this method was to minimize the testing set error

while maintaining a low training set error. The result, hopefully, gives an optimized set of

weights and/or time delays for each network.

3.8 Summary

This chapter describes the methodology for developing, training and testing the

ATNN algorithm and code. It also discusses the implementation of the TDNN (a special

case of the ATNN) and the subgrouped RTRL algorithms to be compared with the

ATNN. A brief description of the applications used to train and test the networks is

followed by the procedures used for collecting comparison data. Chapter IV contains all

the comparison results of the applications using the three different types of artificial neural

networks as well as a discussion of the prediction capabilities of each.
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IV. RESULTS AND DISCUSSION

Chapter M covered the development, training, and testing of the Adaptive Time

Delay Neural Network (ATNN), as well as the implementation of the Time Delay Neural

Network (TDNN) and subgrouped Real-Time Recurrent Learning (RTRL) algorithms. It

discussed a means for comparing these algorithms as applied to the problem of predicting

nonlinear, time series processes. This chapter contains the results achieved for each of the

three types of artificial neural networks and a discussion which compares their prediction

capabilities. Two specific nonlinear time series applications were studied. The first, the

sum of two incommensurate sine waves, tackles a relatively easy prediction task as proof

that the new ATNN algerithm works reasonably well as a prediction network. The

second application, predicting the time series function related to a set of financial data,

covers a much more diifficult prediction task. Given, as a single time series process, only

the historical data associated with a real world problem, predict the future activity of the

process. There is more embedded information in such a process than even the human

brain can accurately predict with any great consistency. The artificial neural networks, on

the other hand, are capable of predicting even the financial time series data to some

degree. Thus, if the result can be obtained in time to be useful, the human user of the

system will be relieved of some of the burden involved in trying to make sense of the raw

data from inadequate or noisy sensing devices.

The following results show that each network is able to predict with a great deal of

accuracy. Instead of comparing the networks on the basis of some arbitrary tolerance for

determining percent correct, a Mean Square Error (MSE) from Equation 3.2 is used; it

relates the target output and the predicted output directly. To set the stage for

comparison, a great deal of training and testing runs of each network's code was
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performed. This trial and error method was not to optimize the configuration of each type

of network individually but, instead, to determine the best configuration which could

predict reasonably well with all three. The result provides a means for comparing network

performance in terms of training time efficiency aid mean square error (MSE) of predicted

outputs.

4.1 Incommensurate Sine Wave Results

The sum of incommensurate sine waves exemplifies a function which is just on the

verge of non predictability, in human terms. It i.V a good starting point from which to

determine the capabilities of an untested predictor network. For the results presented here

for the RTRL, TDNN, and ATNN, each network contained one input node, one output

node, and 15 hidden nodes. The task was to predict only to one time step (t+]) in the

future. The RTRL was given only the time delayed output for the previous input. The

TDNN and ATNN inputs were buffered to allow a window size up to the last 20 input

time samples (max zek = 20).

4. 1.1 RTRL RESULTS

The RTRL prediction, as shown in Figures 10 through 12, resulted in a time

averaged MSE below 0.001. As seen in Figure 10, the predicted values usually overshoot

or undershoot the actual desired output a little but the functional form is maintained

almost exactly throughout the test set. For this more simple (low order dimensionality)

application, RTRL provided the best prediction results with the given network parameters.

The RTRL network started the training initially with a very low MSE, because it was

designed to provide feedback and the best possible results in real-time. Thus, Figure 12

shows that the RTRL has a shallow, almost linearly decreasing learning curve.
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Figure 10: Incommensurate Sine Wave Prediction with RTRL
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Figure 11: Incommensurate Sine Wave Prediction with RTRL
Mean Square Error (MSE) for test data
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Figure 12: Incommensurate Sine Wave Results with RTRL
average Mean Square Error (MSE) during training
(15 hidden nodes)

4.1.2 TDNN RESULTS

Predicting the incommensurate sine wave function with fixed time delays, using the

TDNN special case of the code developed in this thesis, proved that the algorithm is

capable of learning the prediction task with the same number of hidden nodes as the

RTRL. With no feedback mechanism, the TDNN must rely on the past inputs, versus

previous outputs derived from learning in the RTRL, to learn the appropriate input-output

relationships of a function. The prediction results shown in Figure 13, for testing after the

first 300 training epochs, were the best obtained for TDNN. More training did not

significantly change the MSE as can be seen in Figure 14. The initial learning curve for

the TDNN was quite steep and then remained stable. The predicted output maintains the

general form of the desired output but the peaks are smoothed instead of sharp decision

points. Also, the predicted output appears to lead the desired output in quite a few

instances thus increasing the error.
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Figure 14: Incommensurate Sine Wave Prediction with TDNN
average MSE per epoch during training
(15 hidden nodes, 10 time delays)
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4.1.3 ATNN RESULTS

In applying the ATNN algorithm to the incommensurate sine wave prediction task,

it was hoped that a better time dependency relationship could be learned. Figure 15 shows

that the ATNN was unable to significantly improve upon the learned time relationship

found with the TDNN. There is an improvement, however, in that the ATNN relates the

peaks better than the TDNN thus not smoothing the prediction at the peaks. The

functional form of the prediction compares more closely to the desired form, but the time

averaged MSE was the same as the TDNN for this best case ATNN prediction after 300

epochs. The learning curve presented in Figure 16 shows that the ATNN learns as well

as, but in significantly fewer training cycles than, the TDNN. The instability in the

learning curve is due to a high learning rate set for the time delay update rule. A decaying

time delay learning rate was incorporated manually through the interactive capability of

the ATNN code to overcome this instability. Decaying learning rates were proven by

Lindsey for the RTRL and were verified in this research to benefit this ATNN algorithm as

well. The next application tasks the prediction capability of these algorithms given a real

world problem with no accurately known mathematical model.

4.2 Daily Financial Data Results

Financial time series data, as seen earlier, provides an interesting example of a real

world dynamic process about which very little is known as far as rigorous mathematical

modeling goes. Historical data is readily available. British Pound opening price data was

chosen for this application. This example has proven in the past to be highly unpredictable

by human forecasters tracking raw data. It is hypothesized that a neural network which

incorporates time dependency relationships will aid the human in assimilating the

information, as normally provided, to better predict future values.
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Figure 15: Incommensurate Sine Wave Prediction using ATNN
a sample of test data (15 hidden nodes, 20 time delays)
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Figure 16: Incommensurate Sine Wave Prediction using ATNN
time averaged MSE per epoch for training data
(15 hiiden nodes, 20 time delays)
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Again each of the three networks was trained and tested as discussed in Chapter EII.

In all the results presented here, it was found that the best configuration for comparing the

networks, given one input and one output, would contain 15 hidden nodes. The TDNN

and ATNN were provided with a maximum of 20 time delays. The case of providing only

10 time delays to these two networks is also presented for comparison. The task was still

to predict only to one time step (t+ 1) in the future.

4.2.1 RTRL RESULTS

Applying the RTRL algorithm to the given data proved unsuccessful in predicting

the desired output because the test data, although normalized on the entire data set,

contained very few points that related directly to the training data set provided. Better

results were obtained after scaling the input data in the same manner as the ATNN code

performs automatically. This extra procedure prevents the saturation of the sigmoid

function so that when the test data lies outside the norm, usable results can still be

obtained. Results of the RTRL are presented in Figure 17 through 19. As seen in Figure

17, the RTRL does learn the financial data time series quite well. However, Figure 18

shows that as this network predicts on points farther away from the actual known data,

the instantaneous MSE gradually increases. Since the RTRL feeds the output, with its

associated error, back to the input and has no long term memory, this was expected.

Figure 19 shows the resulting average MSE, or learning curve, during training. As seen,

the RTRL learns to predict with a time averaged MSE to about 0.001. This RTRL

prediction capability will be compared to that of the TDNN and ATNN in the next

subsections.
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Figure 17: Financial Test Data Prediction with RTRL
(15 hidden nodes)
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Figure 18: Financial Test Data Prediction with RTRL
instantaneous Mean Square Error (MSE) for test data

39



0.003

WSE

0.002

0.001

0
0 20 40 60

EPOCHS

Figure 19: Financial Training Data using RTRL
average Mean Square Error (MSE) per epoch

4.2.2 TDNN RESULTS

Results of predicting the next value of the British pound data, using the TDNN with

10 time delays, are shown in Figure 20. Comparing this to a TDNN with 20 time delays,

as in Figure 22, shows the importance of adding an acceptable amount of memory

capability. The 20 TDNN results follow the functional form of the desired output much

more closely than with just 10 time delays. These prediction results are given for the test

data after training the 10 and 20 time delay networks for 1000 and 500 epochs,

respectively. These were the best test results obtained over the whole training period.

The time averaged MSE for the 20 delay case proves only slightly better than with 10

delays, as shown in Figures 21 (for 10 time delays) and Figure 23 (for 20 time delays).

This is true because the 10 delay case has a portion of the results right through part of the

test set, but even there it does not follow the time varying nature of the real process. With

fewer training cycles, the 20 delay case clearly attempts to follow the real process the best.
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Figure 20: British Pound Data Prediction with TDNN
Test data (15 hidden nodes, 10 time delays)
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Figure 21: British Pound Data Prediction with TDNN
average MSE per epoch (15 hidden nodes, 10 time delays)
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Figure 22: British Pound Data Prediction with TDNN
Test data (15 hidden nodes, 20 time delays)
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Figure 23: British Pound Data Prediction with TDNN
average MSE per epoch (15 hidden nodes, 20 time delays)
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It should be noted also that the first 2K data points in each test set should be the last 2K

known data points of the process (where K is the maximum number of time delays as

configured in the .DEF file). This is because the hidden node buffer must be filled before

prediction actually begins, thus providing a longer term memory for TDNNs than RTRL.

4.2.3 ATNN RESULTS

Applying the ATNN resulted in more erratic learning when high fixed learning rates

were used as shown in Figure 25, but the predicted values match the functional form of

the test data set even better than the best TDNN case or the best RTRL. Although the

predicted values are slightly different from the desired output, they follow the peaks of the

real process with considerably more detail than the TDNN (see Figure 24 for the 10 time

delay ATNN). The minimum MSE is an order of magnitude better than either the RTRL

or the TDNN case. Again, as with the TDNN, the first 2K values of the test set must be

the known past time samples. The increased instantaneous MSE in Figure 26 is the result

of not allowing the buffer to fill properly. The predicted values for this network do follow

the desired output but not as well as for the 10 delay case. Figure 27 shows the results of

the same 20 delay network (after 745 epochs) when the buffers are allowed to fill prior to

the desired prediction. Better instantaneous MSE is obtained for the actual test prediction

points. As seen in Figure 28, a more stable averaged MSE results during training for this

network. The learning rates were held at 0.1 for this network during training. Thus, small

learning rates keep the network more stable but require more training epochs to obtain

even the accuracy seen in Figure 27. Here again, it is seen that the amount of memory

required to learn a particular process is important. Too much memory can "confuse" the

network requiring extra long training times. The ATNN does prove capable of learning

the time relationships better, as in the 10 delay case, by an order of magnitude than the

other two networks tested.
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Figure 24: British Pound Data Prediction using ATNN
Test data (15 hidden nodes, 10 time delays)
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Figure 25: British Pound Data Prediction using ATNN
time averaged MSE per epoch (15 hidden nodes, 10 time delays)
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Figure 26: British Pound Data Prediction using ATNN
Test data (15 hidden nodes, 20 time delays)
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Figure 27: British Pound Data Prediction using ATNN
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Figure 28: British Pound Data Prediction using ATNN
time averaged MSE per epoch (15 hidden nodes, 20 time delays)

4.3 Discussion

The results presented in the previous section clearly show that for a more simple

function, the subgrouped RTRL algorithm performance is almost unbeatable. The TDNN

and ATNN predict the incommensurate sine wave fairly well compared to the RTRL. The

MSE for the RTRL is an order of magnitude better on the incommensurate sine data than

that of time delay networks. The RTRL algorithm, even this 10 times faster subgrouped

RTRL, takes 12 times longer per training cycle than the ATNN code. Running on the

100Mhz Silicon Graphics ONYX systems, the RTRL implementation utilizes only a

single processor per neural network. The object-oriented programming design of the

ATNN allows the work to spread over the available processors (there are 4 running at

100Mhz each on the ONYX). Once trained, though, all three type networks predict in

roughly the same amount of time as would be expected since the number of hidden nodes

was held the same and since the networks are no longer learning. As seen in Figures

I land 18, the instantaneous error begins to increase slightly as the RTRL prediction gets
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farther from the known values. With the amount of time it takes to train, this RTRL

algorithm may be impractical for some real world problems. Retraining is, probably,

necessary quite often to accurately predict highly dynamic processes. The RTRL may

have to be retrained even more often than feedforward type networks since error, which

feeds back to the input in the RTRL, may eventually degrade its abilities. The time delay

type networks may be better for predicting real world processes, which are often more

nonlinear and more complex, thus requiring some amount of long term memory

incorporated in the learning process.

The results, for an example of this real world type process, show that the ATNN

code developed here will be more adaptable to the inputs especially if their values are not

known to directly relate to the trained values before testing. Once the input data from

past known events are buffered the ATNN learns to predict the direction of change for the

future values of a real world process exceptionally well even for test data that is outside

the norm of the training set. Therefore, for predicting the direction of future values of a

highly nonlinear process, the ATNN wins, by an order of magnitude in MSE, over the

RTRL or TDNN.

4.4 Summary

This chapter discusses the results of research performed using the ATNN code

developed in this thesis. By comparing the ATNN and TDNN, the importance of learning

the best time delay values became apparent. By varying the fixed time delays in the

TDNN as well as letting the ATNN do that work, better prediction resulted. Two specific

nonlinear time series applications were studied. The RTRL beat the ATNN and TDNN

for the more simple nonlinear function in terms of absolute accuracy. However, The

ATNN learned quickly and provided very accurate prediction of the process direction.

The ATNN outperformed the others by far when given a complex, real world processes.

47



After presenting the results, a brief discussion is included on the computation times

of the computer codes used (i.e., ATNN and RECNET). The algorithm for ATNN

inherently takes less time than RECNET. RECNET also suffers in that it only runs on a

single processor whereas ATNN makes use of the multi-processor environment when

available. Conclusions and recommendations for future work in this area are given in the

next chapter.
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V. CONCLUSIONS AND RECOMMENDATIONS

This thesis implements an Adaptive Time Delay Neural Network (ATNN) capable

of user-defined degeneration to the more common Time Delay Neural Network (TDNN)

or Error-Backpropagation Network (BP). The algorithm test results and time series

function prediction capabilities as compared to the RTRL algorithm show the advantages

and disadvantages of ATNNs for prediction. Time series prediction, defined as

determining future value of a process based on historical data, applies to a great number of

real world situations. Many of these applications are, also, extremely important to the Air

Force.

5.1 Conclusions

Lindsey demonstrated the RTRL algorithm's ability to learn several time dependent

functions. He showed that the RTRL was more robust than the best linear predictor. So

this thesis compares an RTRL algorithm to the prediction ability of a new algorithm,

ATNN, which learns the optimum time delays on the input facts. This new approach to

solving the time series function prediction task proves useful in both determining the

direction of future values and taking less computation time during training. Although the

RTRL clearly beat the ATNN at predicting for a known predictable function, the ATNN

still performed to within 10 percent of the almost exact RTRL capability. The TDNN

prediction capability came in last for this case because a smoothing effect at the

nonlinearities. It was the ATNN that bested both the TDNN and RTRL when applied to

a real world process with no known mathematical function. The RTRL had problems

handling different inputs than those of its training set due to a scaling problem. The

TDNN again learned the overall trend in the data set but tended to smooth over the

nonlinearities. Thus for a highly nonlinear process the ATNN outperformed the others by
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far. This comparison testing demonstrates that the ATNN should be very good at

predicting any process, but if the process has a high degree of randomness, the ATNN can

pick out and predict even the fine sample to sample relationships. The other networks

tested here could not.

Every algorithm studied as part of this research effort incorporates its own strengths

and limitations. What works best will depend on the problem the network attempts to

solve. There exist many ways to tailor a network. Fit between the problem and solution

governs the choices. It seems evolution may try various modifications in network design,

use them for a while, then keep those that solve the problems the best. The central

nervous system does not conform to a single network layout but uses the right design in

the right places. The best network design depends on the task and how the evolutionary

choosing process shook out. For engineers trying to match artificial neural networks to

problems and solutions, the most effective approach might be to develop a toolbox

containing various network layouts, apply those that make sense, and keep only the most

efficient network for the given problem. This thesis steps toward the process of building

an effective toolbox for solving real world problems.

5.2 Recommendations

Real world inputs generally have more dimensions than those chosen in a laboratory.

This scaling problem concerns whether the scaled network can incorporate all the relevant

dimensions and still perform the prediction task in real time. Also, how are the correct

inputs to be add to the relevant dimension of a complex process determined? The ATNN

code developed for this thesis allows the user to provide a large number of input features

than the typical TDNN input scheme for trying to predict the future values in a given
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process. Therefore future work could incorporate this ability by providing the network

with other processes that seem to effect the process under study.

Many processes associated with the real world are highly nonlinear and seemingly

unpredictable. These are very interesting to study because these "random" processes

usually are not completely random. Potential exists for moving them from the realm of

unpredictable to some degree of predictable using artificial neural network technology.

One very interesting problem for the Air Force is predicting pilot head motion, which is

often a highly nonlinear process. Prediction seems possible given the pilot's situation at a

particular instant in time is known. This prediction could be used to update virtual cockpit

displays faster. By predicting where the head will be just a tenth of a second ahead, it is

possible to make the computer generated scene on a helmet mounted display seem more

real, or virtual. This thesis provides a comparison of one method, ATNN, to another,

RTRL, which might be used to perform this prediction task. Much more research is

needed in the area of neural networks, and research using them for predicting time series

processes has really just begun.
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APPENDIX A. Time Delay Update Rule

This appendix presents the derivation of the time delay update rule found in the

article by Lin [9] and used in this thesis.

Define an instantaneous error measure (MSE) as in Equation 3.2.

E(t,) = '(d,(tQ-a,(t)) 2

JGP

where P is the number of output nodes with computed values, ai(lp). The term dj(ln)

denotes the desired output of nodej at time :n.. Then by the chain rule

dE,. ) (tE.) s(tQ.) (A.1)

as 1, d,, a(Ar

The second term in Equation A. 1 is given by

= •--w,,a, (t. - ,,*
flk ,, i =o k-1 (A.2)

= -wa/(t1 -

where N is the number of nodes in the previous layer and K is the maximum number of

time delays. Now define
i E(t) (A-3)p•(t,) asin

Substitute Equation (A.2) and (A.3) into Equation (A. I), to obtain

dEQ =) = -p, (t)waQ(t - Tfk) (A.4)

Thus the learning rule as in Equation (3.8) is obtained
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= '1p, (tI ) wjG'I. (k5)

To derive p, (t.), apply the chain rule and consider two cases:

P(I)=aE(t.)
CIS,

= aE(t.) aa,(t.) (A.6)

dc, Iasi
RE(I. f'(Sj(t,))

dcla

To find 1a, consider two cases:

1. Ifj is an output node:

dEI) = (dj(t.)--aj(t)) (AM7)

dCa,

and thus Equation (A.6) becomes

pj (t.) = -(dj (t.) -aj (t,)f'(Sj (Q,) (A.8)

2. Ifj is a hidden node:

dE(Q) dE(Q )dSj(t,)
dac, Pp Sj aa,

dE Q.) d K
=e,• P'• F ,da -w,.a,(t.-v')) (A.9)

K
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where P is the number of nodes in the next layer, N is the number of nodes in the previous

layer, and K is the maximum number of time dealys. For this case Equation (A.6)

becomes

Pi,(t.) = -. p, (t.)W,,k (I.) s,(St.)) -1.0o)
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APPENDIX B. Using the ATNN Code

R I An Interactive Enxmronmenf

A main program, named testatnn, controls the operation of the ATNN algorithm. It

provides an interactive environment for training (the default option), testing, and running

the ATNN using the "-L", "-T, "-R" options, respectively. The atnn command, if given

alone, defaults to a training example of the network named ATNN which requires a

definition file (ATNN.DEF) and a fact file (ATNN.FCT). The "-n netname" option, if

added to the command line before the other options, allows the user to specify a particular

network name using the structure (in netname.DEF file) for an associated fact file

(netname.FCT) to begin training. Another command line option (-v) initiates a verbose

mode for tracing the network through the training or testing phase then saving the weights

and time delays into a readable ASCII file (located in a netname.MAT file). As an

example, the command

atnn -n mytestfile -T -v

will execute the test part of the ATNN algorithm, with verbose output to the monitor,

using "mytestfile.TST" as the input fact file.

The program is interactive in that it allows the user to set a maximum number of

epochs or target minus network output tolerance for determining program completion, but

the training process may be suspended (by pressing the ESC key on the Silicon Graphics

or any key on a PC) and saved at any point. Subsequent training automatically resumes

from the stored network information (located in the associated .WTS file). This allows for

testing at different points during the training process which helps in optimizing training.

Blum uses this same file extension naming convention throughout his neural

network tool kit. Implementations require basically the same set of files: files for

network definition (.DEF files), training data (.FCT files), test data (.TST files), and run
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data (.IN files). Outputs save to a common set of files: binary learned network

information (.WTS files), ASCII learned network information (MAT files) when -v

invoked, and run results (.OUT files). Two additional files, implemented for this thesis,

save intermediate error information for later analysis and comparison: training error

(.ERR files) and test error (.TER files).

A.2 Training with the A TNN

Given the required files, atnn configures, dynamically, to the defined network

parameters. Memory gets allocated for all the variables during initialization. The program

reads each vector pair, one at a time, to the end of the file. Thus, any number of patterns

may be presented to the network from the fact file. The network begins learning to

optimize the weights and time delays, until either all the facts are within tolerance, the

maximum number of iterations, or cycles, is reached, or training is suspended.

During training, ATNN outputs information to the monitor for determining training

status. In the default mode, the cycle (or epoch) number displays followed by an "x",

indicating a bad guess (outside tolerance), or a ".", indicating a good guess (all outputs

within tolerance). In the verbose mode, several messages display information to trace the

outputs through the learning phase: Unsquashed guess - the linear output before applying

the sigmoid, the Output layer threshold - used in the sigmoid function, Desired outputs,

and network Guessed outputs. Also, the words Bad guess or Good guess replace each

"x" or "." as appropriate. At the end of each cycle, the average MSE and percentage

correct display.

The fact file (with a .FCT extension) contains all the input-output pattern pairs,

called vector pairs, for training. In each of these files, the first line defines the vector of

minimums for the input features, followed by a comma, followed by the vector of

minimums for all the output factors (thus the name vector pair). The second line contains
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the maximums for the inputs and outputs in the same manner. The third line is a comment

line which begins with a colon (" : "). The subsequent lines each contain the actual vector

pairs. The maximums and minimums scale the values of each piece of data to a number

between 0 and 1. Values below the specified minimum or above the maximum for each

fact get converted to 0 or 1, respectively. Upon training completion, or suspension, the

learned parameters get saved to a binary file (netname.WTS file) and computed error and

accuracy, for each epoch, go to another file (netname.ERR). The resulting network may

then be tested or run.

R3. Testing and RAunning the A TNN

When invoked with the atnn -T command option, testatnn tests the trained network

on the facts stored in the test file (.TST file). The test fact file, formatted the same as the

training fact file, contains vector pairs for testing. An output file (with a .TER extension)

saves the desired output, network output, and instantaneous Mean Square Error (MSE)

for each input vector as well as a time averaged MSE for the entire test data set. To run

the trained network, giving it only the input vectors, invoke the atun -R command option.

This requires an input file (with a .IN extension) in much the same format of minimum

line, maximum line, comment, and input features. However, no desired output vector is

included in the input file. The program creates a file of outputs (with a .OUT extension)

corresponding to the input features.
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APPENDIX C. Adaptive Time Delay Neural Network Source Code

This appendix contains the source code listings for the Adaptive Time Delay Neural

Network algorithm developed at ART called ATNN. It was written in C++ object-

oriented programming style and successfy compiles on the Silicon Graphics

workstations as well as on an IBM/compatible 486 personal computer using Turbo C+ +

3.0. The main shell program is named testatnn.cc.
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H TESTATNN.CC
H Lnteractive ATNN System Demonstration Program
H Used to verify ATNN system algorithms
// Developed with Turbo C++ 3.0
/ Author: Capt James Gainey, GEO-93D Last Modified: 10 Sep 93

#define NDEBUG 1 / ANSI method to enable or disable debugging
#include"atnn.hpp"

#include <getopt.h>

char netname[16]="ATNN"; // file where test data is stored
char mode=0; //default to learn or training mode
int trace=0; H SET TRACE--<whatever> at DOS prompt to turn trace on
char *p;

main(int argc,char **argv)
{

#ifdef ZTC
H shouldn't have to do this! these should be defaults
cout.setf(cout.unitbuf); H turn "unitbuf" on to force flushing after each char
cout.unsetf(cout.scientific); // turn skipws and scientific off
#endif
cout.precision(2);

cout << "TESTATNN - Interactive Adaptive Time-Delay Network Testern";

int option;

while ( ( option = getopt( argc, argv, "n:LTRv")) != -1)
{

switch ( option)
{

case mn:

strcpy( netname, optarg);
break;

case VL':
mode = V;
break;

case 'T':
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mode = T;

break;

case 'R':

mode =W;

break;

case V:

trace = TRUE;

break;

default:

break;

}

atnn b(netname);

switch(mode){

case T:

b.testo;

break;

case V':

b.runO;

break;

default:

case '':

b.traino;

break;
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return 1;
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H1 ATNN.CC
H/Implementation of an Adaptive Time-Delay Neural Net
I/Developed with Turbo C++ 3.0
// Author: Capt James Gainey, GEO-93D Last Modified: 10 Oct 93

#include "atnn.hpp"

extern int trace;

atnn: :atnn(char *s):net(s) II constructor

const NOPARMS =9;

PARM parms[NOPARMS];

strcpy(parms[0].name, "HIDDEN");
parms[0].type = integer;

strcpy(parms[ I ].name, "MOMENTUM");
parms[1 ].type = real;

strcpy(parms[2].name, "INITRANGE");
panms[2].type = real;

strcpy(parms[3].name, "MAXNUMTAU");
parms[3].type = integer;

strcpy(parms[4].name, "EPOCH");
parms[4].type = integer;

strcpy(parms[5].name, "TOLERANCE");
parms[5].type = real;

strcpy(parms[6].name, "RATE2");
parms[6].type = real;

strcpy(parms[7]. name, "TSTEP");
parms[7].type = real;

strcpy(parms[8] .name, "TDNN");
parms[g].type = integer;
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readparmsNOPARMS~panfls,nual);
q = parms[O].val.i;
momentum = parms[l].val-f;
initrange = parms[2].val.f;
K =parms(3].val.i;

epoch = parms[4].val.i;
tolerance = parms[5].val.f,
Iearnrate2 = parnis[6].val~f,
tstep =parms[7].val.f;,

TDNN = parrns[81.val.i;

HI initialize weight matrices to random values from -I to +I
HI and time delay matrices to integer values from 0 to K

WI =new mtrx3d(q,nK,-initrange);
W2 =new mtrx3d(p,q,K.,-initrange);
Taul=new mtrx3d(q,nKK);
Tau2=new mtrx3d(p,q,KK);

dWl -new mtrx3d(q,nK);
dW2 =new mtrx3d(p,q,K);
dTaul~new mtrx3d(q,nK);
dTau2=new mtrx3d(p,q,K);

a-bid' =new znatrix(nK);
h buf =new matrix(qK);
a~buf p =new matrix(nK);
h,.buf..p =new matrix(q,K);

h-new vec(q);
o-new vec(p);
d-new vec(p);
e~new vec(q);

thresh I new vec(q);
threshlI >randomfize(initrange);
thresh2-new vec(p);
thresb2->randomize(initrange);

if(epoch) {
totd~new vec(p);
tote-new vec(q);

minvecs;new vecpair(n~p);
63



maxvecs=new vecpair(np);

cycleno=O;
}

atnn: :-atnnO
{

delete W1;
delete W2;
delete Tau 1;
delete Tau2;

delete dWl;
delete dW2;
delete dTaul;
delete dTau2;

delete h;
delete o;
delete d;
delete e;

if(epoch){
delete totd;
delete tote;

d

delete minvecs;
delete maxvecs;

I

//ADAPTIVE TIME DELAY ALGORITHM METHODS - ENCODE AND
H RECALL
//

int atnn: :encode( vecpair &v)
{

float maxdiff,

/ Step 1): Propagate through to hidden layer nodes
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II Buffer inputs to a buf[i][tn] for the last K timesteps

buffer( a~buf v.a );

I Sum the K buffered time-delay connections. Each connection
/is the product of a time delayed input and the weight
I/matrix. Get tdblocks for each input.

propagate(*h, *Wl,*Taul,*a-buf);

I/ Sum all the tdblocks into a node then apply sigmoid function

h->sigmoid(*thresh 1);

//Step 2): Propagate through to the output nodes

H Buffer the hidden laver activations to
H h_bufli][tn] for the last K timesteps
buffer( h bufh),

// Sum the K buffered time-delay connections. Each
// connection is the product of a time-delayed input
// to the hidden node and the weight matrix. Get
// tdblocks for each hidden node.

propagate(*o,*W2,*Tau2,*hIbuf);

H Sum all the tdblocks then apply sigmoid function

if(trace){
cerr << "\nUnsquashed guess: "<< *0
<< "\nOutput layer threshold " << *thresh2;

o->sigmoid(*thresh2);
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/ Step 3): Compute the error for the output layer

if(epoch){ // adjust weights at the end of the cycle

//d = o (1-o) (o-t)
/ the somewhat circuitous code is so that we can use existing
/ overloaded operators from the vector class

*d = (*(v.b) - *o);

if(trace){
cerr.precision(6);
cerr << "nDesired Output: "<< *(v.b) << " Guess: "<< *o;

maxdiff--d->maxvalO;
*d = *d * o->d..IogisticO; ld_logisticO returns v(l-v)

#/Step 4): Compute the error for hidden nodes

backprop(*e,*d,*W2);

*e = *e * h->diogisticO; H returns dot product of vec & complement

I/weights will be adjusted at end of cycle with following totals

*totd +- *d;

*tote -= *e;

}
else{ / pattern-by-pattern training

H Step 3): Compute the error for the output layer

II d = o (1-o) (o-t)
H the somewhat circuitous code is so that we can use existing
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HI overloaded operators from the vector class

*d= (*(v.b) - *)

MSE +-- (0.5 * (*d * d)

if(trace){
cerr.precision(6);
cerr «< "nD~esired Output: « <*(v.b) «" Guess: <« *o

maxdiff'-d->maxvalo;
*d= *d * o->dilogistico; lid logistico returns v(l -v)

HI Step 4): Compute the error for hidden nodes

backprop(*e,~d,*W2);
*e= *e * h->dilogistico; // returns dot product of vec & complement

IIStep 5): Update weights and time-delays for the hidden to output layer

II W2 = W2 + i h d + (momentum*dW2(t- 1))
initdWts(*dW2, *h,_buf *d,learnrate~momentum); HI" a h d + momentum" part

(*W2) += *dW2;

if(TDNN=O){

fl Tau2 = Tau2 + (rate * h' W2 d)
deriv(*h,_buf..p,h4_buf*Tau2,tstep);

initdTau(*dTau2,*W2,*h,_buf p, *d,lwanirate2);

(*Tau2) += *dTau2;

*tlhjesh2 += ( (*dj) * learnrate)
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#/ Step 6): Update weights and time-delays for the input to hidden layer

H/WI = WI + a i e + (momentum*dWl(t-I))

initdWts(*dWl ,* abuf *eij~eaflrnratemmentu);

(*WI)+= *dWl;

if(TDNN=='O){
I/Taul = TauI + (rate *i'W1 e)

deriv(*abuf p,*abuf*TaulI,tstep);

initdTau(*dTaul ,*W ,*aý_buf p,*e~learnrate2);

(*Taul) += *dTaul;

*thresh I +=(*(e) * learnrate);

fl/ end pattern-by-pattern training

HI Step 7): Compare max diference to tolerance

if~trace)
cerr «< "\n~aximum difference: "«<<maxdiff,
if~maxdiff < tolerance) { return 1;)
else {

return 0;

} Iend encodeO

void atnn::deriv(matrix& m2,matrix& mI,mtrx3d& m3dI,const float tstep)
//Compute the derivative of node input for time-delay learning rule updates
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int j=O; fl/time-delay value is the same for all output nodes
fl associated with each input
for(int i=O;i<m3dl .widthO;i++)

for~int k=O;k< K;k++){
int tau = int (m3dl.getvaloj,ik) + 0.5);
it(tau==O)

m2.setval(iýk,(((ml .getval(iýtau)) - (ml .getval(Ltau+l1)))/tstep));
else

m2.setval(i,k,(((ml .getval(iLtau- 1)) - (ml .getval(iLtau+ 1)))/(2*tstep)));

void atnn::buffer m'atri *ml, vec *vl)

for(int i=O; i<ml ->deptho; i++)

for(int tn--K- I ;tn>0;tn-)

ml ->setval(iLtn+l1,(ml1-)getval(iLtn)));

ml ->setvalQi,0,(vl ->v4'])),

vec atnn: :propagate(vec& vI, mtrx3d& m3dl1,mtrx3d& m3d2,matrix& ml)
HI Double sum of product (weights * node inputs) for each time-delay on each input

for(int j=Oj<m3dl .depthoj++)
for(int i=0;i<zn3dl1.widtho;i++)

for(int k0O;k<K;k++)

if ( m3d2.getvalo,iLk) < 0.0 ) {m3d2.setvaloj,i,k,0.O);)
int tau = int (m3d2.getvaloj,i,k) + 0.5);
vILvfj] +-- (m3d Lgetvalj,i,k)) * (m I getval(i,tau));

return vi;

vec atnn::backpr-op(vec& vl,vec& v2,mtrx3d& m3dl)
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HI Double sum for computing back-propagation error to the hidden nodes

for~int j=Oj<m3di .depthoj++)

for~int in=O;m<rn3dl .widtho;m4+)

for(mnt k0O;k<K~k4-I)

vl.v[m] += (v2.vU]) * (m3dI.getvalOj,m,k));

return v I;

void atnn::initdWts(mtrx3d& m3di,matrix& ml,const vec& vi,
const float rate~const float momentum)

//Used to initialize a 3d matrix to the element by element product
HI ofvlI and mlI times the learn rate
HI also adding in the previous contents of the 3d matrix
IImultiplied by a momentum term.

for(mnt i=O;i<m3dl .deptho;i++)
for(int j-=Oj<m3di .widthOj++)

for(int k0O;k<K;k++)
m3di .setval(ij,k,(((m3di .getvalQij,k))*momentum)+
((vi I.v[i])*(mI .getvalOj,k))*rate)));

void atnn::initdTau(mtrx3d& m3dl,mtrx3d& m3d2,matrix& mi,const vec& vi,
const float rate)

II Used to initialize a 3d matrix to the element by element product
HI of vi, m3d2, ml, and the learn rate. No momentum term.

for(int i=O;i<m3d2.deptho;i++)
for(int j=Oj<m3d2.widthoj++)

for(int k=O;k<K;k++)
m3dl1.setval(i~j,k,((- I)*(vi .v[i])*(m3d2.getval(i~j,k))

*(ml1 getvalOj,k))*rate));
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vec atnn::recall( vec &v)

{

//Step 1): h =F(WI i)

fl Buffer inputs to a .bufi][tn] for the last K timesteps

buffer( abuf, &v);

//Sum the K buffered time-delay connections. Each connection
/is the product of a time delayed input and the weight
//matrix. Get tdblocks for each input.

propagate(*h,*Wl ,*Tau 1,*a,_buf);

h->sigmoid(*threshl);

/ Step 2): o = F (W2 h)

vec out(this->p);

H Buffer the hidden layer activations to
/ h_buf[i][tn] for the last K timesteps

buffer( h.buf, h);

// Sum the K buffered time-delay connections. Each
// connection is the product of a time-delayed input
H/to the hidden node and the weight matrix. Get
// tdblocks for each hidden node.
//

propagate(out,*W2,*Tau2,* h_but);

if(trace){
cerr << "\nUnsquashed guess: "<< out
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<< "\nOutput layer threshold" << *thresh2;

)

out. sigmoid( *thresh2);

return out;

H
I-

/ This will get called from the neural network train since train
// will call the most derived cycle method.
H We need to override the network cycle since the time delay algorithm
fl may require the weights to be update at the end of a cycle.

float atnn::cycle(istream& s)
{

vecpair v(np);
int good =0;
int total =0;

s >> *minvecs;

s >> *maxvecs;

if(epoch) H/initialize error accumulation vectors
{

for(int i=0;i<totd->lengtho;i++)
totd->set(i);
for(i=0;i<tote->lengthO;i++)

tote->set(i);

skipcmt(s);

int okay = TRUE;
int td = total;

while ( td <K) K Buffer inputs to a__bufli][tn] for K timesteps

{
s >> v;
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if(s.eofOlls.failO)
okay = FALSE;

if (okay)

v. scale(*minvecs, *maxvecs);

buffer( a bufv.a );td++,

while ( okay)

if(s.eofolls.failo)
okay = FALSE;

if okay)

v."sae(*miinvecs, *maxvcs);

if(encode(v))

good++;
if(!trace)

cerr «< "

else
cerr << "\nGood guess";

else

iffl trace)
cerr << Y

else
cerr << '\nBad guess";
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total++,.

#ifdef__TURBOC__
if(kbhito)(return 1.0;)

#else
if( getbutton( ESCKEY)

return 1.0;

#endif

if(epoch){ H1 adjust weights at end of cycle

IIW2 =W2 +i~hd (t3tal)
initdWts(*dW2,*h buf *totd,learnrate,momentum); ia h d "part
(*W2) += *dW2;

if(TDNN=-O) {

//Tau2 = Tau2 + (rate Ifh W2 d(total))

deriv(*h -buf y, *h buf *Tau2,tstep);
initdTau(*dTau2,*W2, *h buf j,,*totd,leamrate);
(*Tau2) += *dTau2;

*tliresh2 += ( (*totd) * learnrate)

H IW = W1 + i ie(total)

initdWts(*dWl,*a -buf, *tote,Ileanijate momentum);

(*W) += *dWl;

iffTDNN==0)l

/ITaulI = TaulI + (rate * i' WI e(total))

deriv(*a -buf..p,*a-buf, *Tau I ,tstep);
initdTau(*dTauI, *W1, *a -buf..p, *tote,lea.prate);
(*Tau 1)+= *dTaul1;
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*threshlI += (*('tote) * learnrate)

avgM[SE = MSE / float(total);
accuracy = float(good)Ifioat(total);

char errfh[3 2];

sprintf(errih,"%s.ERR",name);
ofstreamn errf(erflfios: :app);

erf«f< cycleno «< "\t" «< avgM[SE < <<t «accuracy «< endi;
errf.closeQ;

MSE=O.0;

cerr << "\n" «<"avgM[SE is " «<avgM[SE;

cerr «< "\n" «<accuracy * 100 «<" percent correct.\n";
return accuracy;

HI ADAPTIVE TIME DELAY ALGORITHM4 METHODS - TEST AND RUN

float atnn: :testo

int good 0;
int total =0;
char tstfn[32];
vecpair v(n~p);
vec out(p);

if (!I oadweightso)

cout << "No stored network to test.";
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return 0;

sprintf(tstfh, "%s. TST",name);
ifstream tstf(tstfhnios: :in);

tstf»> *minvecs;

tstf»> *nmaxves;

II skip comment
skipcmt(tstf);

int okay =TRUE;
int td = total;

while ( td < K) H/ Buffer inputs to a bufli][tn] for K timesteps
I
tstf»> V;

if(tstf.eofOlltstf.fail())
okay =FALSE;

if~ okay)

v. scale( * mmnvecs, *maxvecs);
buffer( a bufv. a); td++;

while ( okay)

tstf»> V;

okay = FALSE,

if (okay)

76



v. scale( niinvecs, *naxvecs);
out--recaHl(*(v.a)),
if( (*(v b)-out) inaxval() < tolerance)
good++;

tM4SE = (0.5 * ((*(v~b)-out) * (*(v~b)-out)));

MSE +- tMSE;

total+-+;

char tsterrfh[32];

sprintf(tsterrfh,"%s.TER",name);
ofstream tsterrt(tsterrfiiios: :app);

tsterrf«< total «< "Vt «< *(v~b) << 1\t" «<out
«"\t" «< tMSE «< endi;

tMSE = 0.0;

tsterrf.closeO;

char tsterrfh[32];

sprintf(tsterrfh,"%s.TER",name);
ofstrearn tsterrf(tsterrfhnios: :app);

tsterrf«< "EPOCH #: <«cycleno << N"\t
«<"time avg MSE << «MSE/total «<endl;

MSE = 0.0;
tsterrf.closeO;

cerr «< "\n" «<float(good)/float(total) * 100 << percent correctn;
return float(good)/float(total);

void atnn::runo
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char ifii[16],ofi4 16];

vec mn(n),out(p),minvec(n),maxvec.(n);

if(!loadweightso){
cout «< "No stored network to run.\n";
return;

sprintf(ifii,"%s.IN 'namne);
sprintf(ofn,"%s.OUT 'name);
cout << "Running from " «<ifn <<"«
cout << "Output to " <<ofh <<«\"
ifstream inf(ifn~ios: :in);
ofstreamn outf(ofiiios: :out);

inf» nu nvec;
inf»> maxvec;

HI skip comment
skipcint(inf);

int okay = TRUE;
int td = 0;

while ( td < K) HI Buffer inputs to a bufli][tn] for K timesteps

inf >>in;

iffinfleofollinf.failo)
okay = FALSE;

if (okay)

in. scale~rninvec,maxvec);
buffer( akbuf, &n) td++;

while ( okay)

inf»> in;
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if(inf•.eofOllinfMfaiO)
okay = FALSE;

if( okay)
(

in. scale(minvec,maxvec);
outf << recall(in);

}

}return;

//

II ATNN LEVEL INPUT/OUTPUT METHODS:
H Saving and loading weights, skipping comments.
//

int atnn::saveweightsO
{

FILE *f,
char fn[32];

sprintf(fn,"%s.WTS ",name);
f=fopen(fn,"wb");

#ifdef TURBOC
if(f <= 0) H/couldn't open the file
{

#else
if(f- NULL) // couldn't open the file
{

#endif
cerr << "Open of file " << fn <<" save failed.'n";
return 0;
}
else{

fwrite(&cycleno,sizeof(int), 1,f);
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if( !(Wl->save(f))
II 1(W2->save(f))
II P(Taul->save(f))
I !(Tau2->save(f))

fl !(threshl->save(f))
II !(thresh2->save(O)
)

{
cerr << "Nothing to save in file "<< fn << ".n";
fclose(t);
return 0;
)
else
{

cerr << "Saved Weights and Taus in file" << fn << "An";
fclose(f);}

/ put matrices into ".MAT" in readable form

if(trace){
sprintf(fn,"%s.MAT",name);
ofstream matf(fnios::out);
matf<< "First weight matrix contains: \n"

<< *WI

<< "First time-delay matrix contains: \n"
<< *Taul

<< "Second weight matrix contains: \n"
<< *W2
<< "Second time-delay matrix contains: \n"
<< *Tau2;

return 1;

int atnn::loadweightsO
{

FILE *f;
char fh[32];

int ret val = FALSE;

sprintf(fn,"%s.WTS",name);
f-fopen(fh,"rb");
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#ifdef__TURBOC_
ifif <= 0)/H couldn't open the file

#else
iiff = NULL) HI couldn't open the file

#endif

I
else

ret -val = TRUE;

if (ret~val)

fread(&cycleno,sizeof(int), 1 ,f;

if( ! (W1I->load(t))

!W-Ioad(Tal-lad)
~j!(Tau2->load(f))
ji!(thresh->load(f))
Ij!(thresh I->Ioad(f)))
{(heh-Ia~)

rt-val = FALSE;

else

ret val =TRUE;

fclose(f);

return ret-val;
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//NET.CC

II Source code for abstract neural network base class

#include "net.hpp"

ifindef__TURBOC_

#define MAXPATH 16

#endif

H Parameter table functions

int readparms(int nPARM *p,char *name)
{

char fh[16];
sprintf(fn,"%s.DEF",name);
ifstream def(fnios::in);
if(!defO{

cerr << "Failed to find definition fileAn";
return 0;

}
while (readparm(defn,p) && !def.eofO)

return 0;

istream& readparm(istream& sint noparms,PARM *p)
H This streams extraction operator takes input from network definition file
H for one definition parameter. It reads in the name of the parameter
H and then looks up which entry in the parameter table to instantiate
H with a value.
{

char keyword[NAMELEN],val[ 16];
s >> keyword;
if(!s 11 s.eofO 11 s.failO) H end of file or failure to read keyword

return s;

for(int i=O;i<noparns;i++)
if(!strcmp(keyword,p[i].name))

break;

82



if~i < noparms) Hi recognized Parameter

case string: s »> p~iI.val.s; break;
case integer: s»> pI~i].val.i; break,
case real: s »> p[i].val.f, break;

else
S >> Val;

return s;

H NET CLASS
II Abstract neural net class methods

net: :net(char *s)

char fn[16];
name--new char~strlen(s)+ 1];
strcpy(name,s);
const NOPARMS=5;

PARM parms[NOPARMSI;

strcpy(parms[O].name, "INPUTS");
parms[O].type = integer;

strcpy~parms[lI].name, "OUTPUTS");
parms[l].type = integer;

strcpy(parms[2]. name, "RATE");
parms[2].type = Teal;

strcpy(parms[3].name, "DECAY");
parms[3].type =real;

strcpy(parms[4].name, "ITERS");
parms[4].type =integer;
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readparms(NOPARMS,parms,nwme);
n = parm[O].val.i;
p = parms(1].val.i;
learnrate = parms[21.val~f,
decayrate = panns[3].val.f;
iters =parmns[4].val.i;

return;

net: :-neto

delete name;

void net: :traino

ifstream * s;
float ret;

char fliLMAXý_PATH];
sprintf(fn,"%s.FCT",name);

if( Ioadweightso)

I

else
f

cerr «< "Training from new weights.\n";

#ifdefTURBOC_
cerr «< "Training from " «<fn <<" Press any key to stop.\n";

#else
cerr << "Training from " «<fni « " Press ESC key to stop.\n";

#endif

int okay =TRUE;
while( okay)

s=new ifst ream(fn,i os: :in);
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cerr << "Failed to open fact file.\n";
return;

cerr << "Cycle " <<++cycleno «":"
if ( cycleno, >= iters) okay = FALSE;)

ret--cycle(*s);
delete s;

#ifdefTURBOC_
if(ret>--l.O 11 kbhito)
I

#else
if(ret>=1.O 11 getbutton( ESCKEY)

#endif
cerr << "Training suspended at < «cycleno <<" cycles.\n";
okay = FALSE;

saveweightso;
return;

float net::cycle(istream& s)

vecpair v(n~p);
int good =0;
int total 0;

skipcmt(s);

if(s.eofI~lls.failO)break;
if(encode(v))

good++-;
total++;
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return float(good)/float(total);

int net:: skipcmnt(istreamn& ink)

int c;
inf~unsett~inf skipws);

do(

if(c<O)
return 0;

}while( (c!-Oxd) && (c!=Oxa))
inf setfi~inf skipws);
return 1;

else(
inf.setf(inf. skipws);
return 0,

float net: :testo

int good =0;
int total =0;
char tstfh[32];
vecpair v(n~p);
vec out(p);

if(R!oadweightsO)

cout << "No stored network to test.";
return 0;

sprintf(tstfli,"%s. TST',nane);
ifstrearn tstf(tstflmios: :in);

// skip comment
skipcnit(tstf);
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out--recail(*(v.a));
if( (*(v~b)out).maxvalo < tolerance)

good-H+;
total++;

cerr << "\n" <<float(good)Ifloat(total) 100 <<" percent correct.\n",
return float(good)/float(total);

void net:: run()

char ifh[16],ofn[16];
HI int c;

vec in(n),out(p);

if(!loadweightso) {
cout « "rNo stored network to run An";
return;

sprintf(ifii,"%s1IN",name);
sprintf(ofn,"%s.OUT",nanie);
cout << "Running from " <<ifn << "\n";
cout «< "Output to " «<ofn «< "\n";
ifstrearn inf(ifn~ios: :in);
ofstreamn outf(ofiiios: :out);

skipcmt(inf);

if(!inf 11 infleofrolI inf fail())break;
outf«< recall(in);

return;

87



/1VECMAT.CC
HI vector and matrix class methods
II Author: Capt James Gainey, GEO-93D Last Modified: 10 Sep 93
HI Modified from VECMAT.CPP Adam Blum (1990)

#include <vecmat.hpp>

HI vector class member functions

vec::vec(int size~int val)

v = new floatjjn-size];
for(int i0O;i<n;i++)

v[i]=vaI;
I I constructor

vec::-vecO { delete v;) HI destructor
vec::vec(vec& vi) // copy-initializer

v~new float[n~v1.n],
for(int i0O;i<n;i++)

I ~ ]V.~]

vec& vec: :operator=(const vec& vi)

delete v;
v~new float[n~vl .n];
for(int i=0;i<n;i++)

v[i]=vl.v~i];
return *this;

vec vec::operator+(const vec& vi)

vec sum(vl .n);
for(int i0O;i<vl .n;i++)

sum.v[i]=V1.v[i]+v[i];
return sum;
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vec vec::operator+(const float d)

vec sum(n);
for(int i0O;i<n;i++)

sum.v[i]=v[i]+d;
return sum;

vec& vec::operator+=const vec& vi)

for(int i0G;i<vi .n;i++)
V[i]+=V1.v(i];

return *this;

float vec::operator*(const vcc& vi) II dot-product

float sum=O;
for~int i=O;i<min(nvl .n);i++)

sum+=(vl .v[i]*v[i]);
return sum;

int vec::operator=-(const vec& vi)

if(vi.n!=n)return 0;
for(int i=0;i<mnin(n~vI.n);i++){

if(vI .vli] !v[i])f
return 0;

return 1;

float vec: :operator[](int x)

if(x<lengtho && x>0O)
return v[x];

else
cerr «< "vec index out of range";

return 0;
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hit vec::lengtho~return n}j I/length method

vec& vec::garble(float noise) HI corrupt vector w/random noise

tune-t t;
tizne(&t);
srand((unsigned)t);
for~int i0O;i<n;i-H-){

if((randO% 10O)/l0<noise)
v~i]= -v[i];

return *this;

vec& vec: :normalizeO HI normalize by length

for(int i0O;i<n;i++)

return *this;

vec& vec::normalizeono I/normalize by nonzero elements

int on=O;
for(int i=0;i<n;i-I-I)

on++-I;
forQiO;i<n;i++)

v[i]I=on;
return *thlis;

vec& vec: :randomize(float range)

time- tt;
itpct,val,rnd;

if(range){
time(&t);

srand((unsigned)t);

for(int i0O;i<n;i++){
nd~rando;

pct=(int) (range *100. 0);
val= rnd % pct;
v[i]= (float) val I100.0;
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if(range<0)
v[i] = fabs(range) - (v[i] * 2.0);

return *this;

float vec::maxvalo HI returns maximum ABSOLUTE value

float mx=O;
for(int i0O;i<n;i++)

ikffabs(v~i])>mx){

mxIhsvi)
return mx;

vec& vec: :scale(vec& minvec~vec& maxvec)

for(int i0O;i<n~i++){I
if(v[i]<minvec.v[i])

v[i]0;
else if(v[i]>maxvec.vI~i])

V~i]=1;
else if((maxvec.v[i]-miinvec.v~i])==0)

v~i]1I;
else

v[i]=(v[i]-miinvec.v[i])/(maxvec.v~i]-minvec.v[i]);

return *this;

float vec::d-losisticO HI returns vec * (1-vec)

float sumr=0.0;
for(int i=0;i<n;i++)

return sum;

HI Euclidean distance function IIA-B II
float vec :distance(vec& A)

float sum=0,d;
for~int i0O;i<n;i++){

d=v[i]-A.vI~i];
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if(d)sum+=pow(d,2);
}
return sum?pow(sum,0.5):0;

//index of the highest item in vector
int vec::maxindex0
{

int idxi;
float mx;
for(i=0,mx--INTMAX;i<n;i++)

if(v[i]>mx){
mx--v~i];

idx-i;
}

return idx;

double logistic(double activation)
I

P* These underf1ow limits were copied from McClelland's bp implementation.
We had problems with underflow with numbers that should have been
small enough in magnitude. McClelland seems to have encountered this
and established the numbers below as reasonable limits. - AB */

if(activation>l 1.5129)
return 0.99999;

if(activation<- 11.5129)
return 0.00001;

return 1.0/(1.0+exp(-activation));

vec& vec::getstr(char *s)
{

for(int i=0;i<MAXVEC&&s[i];i++){
if(isalpha(s[i]))

v[toupper(s[i])-'A']l=;

return *this;

void vec::putstr(char *s)

int ct=O;
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for(int i=O;i<26;i++)

vec vec::operator-(const vec& vi)

vec diff(n);
for(int i=O;i<n;i++)

return dif

vec vec::operator-(const float d) II subtraction of constant

vec diff(n);
for(int i=O;i<n;i++)

return diff,

vec vec::operator*(float c)

vec prodoengtho);
for~int i=O;i<prod.n~i+--)

return prod;

vec& vec::operator*=(float c)

for~int i=O;i<n~i++)

return *this;
H I vector multiply by constant

conat SCALE=4;

vec& vec::sigmnoid(vec& thresh)
HI this is the sigmioid activation function we have chosen for
II our backprop implementation. It happens to use the logistic
HI function: I /(I1+eA-x)

for(int i=O;i<n;i++)
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vfi] =(float) logistic( (double) (SCALE *(v[i]+thresh[i])))

return *this;

vec& vec::set(int iLfloat f)

return *this;

istream& operator»>(istream& s~vec& vi)
HI format: list of floating point numbers followed by ','

float dOnt i=O~c;

if(s.eoiO)
return s;

if(shfilO)f
s.clearO;
do

c--s-getO;
while(c!=',' && c);
return s;

vi .v~i++]-d;
if(i==vI .n){

do
c--s.geto;

return s;

ostream& operator<((ostream& s~vec& vi)
HI format: fist of floating point numbers followed by ',,'

s.precision(6);
for~int i=O;i<vl .n;i++)

s < vi [i] «<"
S «<"" "*
return s;
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int vec::save(FILE *f) fl save binary values of matrix to specified file

int successl;=
for(int i0O;i<n;i++)

if(fwrite(&(v~iD),sizeof(v~i]), I,f) < 1)
success0O;

return success;

int vec::load(FILE *f) I//load binary values of matrix from specified file

int success--1;
for(int i0O;i<n;i++)

if(fread(&(v~i]),sizeof(v[OD, l,f) < 1)
successO0;

return success;

IImatrix member functions
matrix: :matrix(int n~int z~float range)

int ij,rnd~time _t t;
int pct;
m--new float *[n];
if(range){

time(&t);
srand((unsigned)t);

for(i0O;i<n~i++){
m[i]-new fioat[z];
forjooj<zj++){

if(range){
rnd-rando;

pct=(int) (range *100.0);

in[illj] (floatXrnd % pct) / 100.0;
if(range<O)

MUillj = fabs(range) - (m[illj] * 2.0);

else
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m[i]Dj]=O;

matrix: :natrix(int n~int p,float value,float range)

int ij;
i--int(range);
m--new float *(nj;
for(i0;~i<n~i4-H){

m[i]=new float[p];
foroj=Oj<pj-H-)

mli]lj]=value;

c=p;

matrix: :matrix(int n~int p,char *fn)

int i;
flint jrnd;
//time t t;

m=new float *[n];
for(i0O;i<n;i++){
m[i]=new float~p];

ifstream in(fiiios::in);

int j;
r=vp.a->lcngtho;
c=vp.b->lengthO;
m=new float *[r];
for(int i0O;i<r;i+-I){

m[i]=new floatic];
foroj=Oj<cj++)
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M[i][j]((vp.a)->vli])*((vp.b)->vWl);

/Iconstructor

matrix: :matrix(vec& vl,vec& v2)

int j;
r=vl .lengtho;
c=v2.lengtho;
m--new float *[r];
for(int i=O;i<r;i++){I

m[i]=new float[c];
forýy=Oj<cj++)

m[i]o]vl .v[i]*v2.voj];

I#I constructor

matrix: :matrix~matrix& ml)I// copy-initializer

m~new float *[r];
for(int i=O;i<r;i++){

m[i]=new float[c];
for(int j=Oj<cj++)

matrix: :-matrixO

delete []m;
} I destructor

matrix& matrix: :operator=(const vecpair& vp)

int j;double d;
r=vp.a->Iengtho;
c=vp.b->lengtho;
for(int i=O;i<r;i++) {

for~ooj<cj++){

m[i]U]}(float)d;
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return *this;

matrix& matrix: :operator=(const matrix& ml)

for(int i0O;i<r;i++)
delete m[i];

r~m1.r;
c--ml I.c;
m--new float* [r];
for(i=O;i<r~i++){

m[i]=new float[c];
for(int j=-Oj<rj-14)

return *this;

matrix matrix:: operator+(const matrix& ml1)

int ij;
matrix sum(r,c);
for(i=O;i<r~i++)

fbrOjOj<rj++)

return sum;

matrix& matrix: :operator*(const float d)

int ij;
for(i0O;i<r;i++)

foroj=Oj<cj++)
m[i][I*=d;

return *thids;

vec matrix: :colslice(int col)

vec temp(r);
for(int i0O;i<r;i++)

temp.v[i]=m[i][col];
return temp;
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vec matrix::rowslice(int row)

vec temp(c);
for~int i=O;i<c;i++)

temp.v[i]'m[row][i];
return temp;

void matrix: :insertcol(vec& v,int col)

for(int i0O;i<v.n;i4-4-)
m[i][col]=v.V~i];

void matrix: :insertrow(vec& v,int row)

for(int i=O;i<v.n;i-H-)
m[row][il~v.vti];

int matrix: :deptho~return r;)
int matrix::wridthOlreturn c;)

float matrix: :getval(int row~int col)

return m[i-ow] [coil;

void matrix:: setvai(int row,int col,float val)

m[row][col] = vat;

int matrix: :closestcol(vec& v)

int niincol;
float d;
float mindist=-INTMAX;
vec w(r);
for(int i=O;i<c;i++){

w--colslice(i);
if( (d=v.distance(w)) < mnindist){

miridist=d;
mnincol=i;
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return mincol;

int matrix: :closestrow(vec& v)

int minrow;
float d;
float mindist=-INTMAX;
vec w(c);
for(int i=0;i<r;i++){

w--rowslice(i);
if( (d=v.distance(w)) < mmdist)(

nundist:d;
minrowi-;

return minrow;

mnt matrix: :closestrow(vec& v,int *wis~float scaling)

int nunrow;
float d;
float mnindist=-INTMAX;
vec w(c);
for(int i=O;i<r~i++){

w-rowslice(i);
d=v.distance(w);

if( d < mindist){I
mindist--d;
minrow--i;

return niinrow;

int matrix: :save(FILE *f) // save binary values of matrix to specified file

mnt success--I;
for(int i0O;i<r;i++)

for(int j=Oj<cj++)
if(fwrite(&(m[il]W),sizeof(m[O][OD), I,f) < 1)

success=O;
return success;
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int matrix: :load(FILE *f)/I load binary values of matrix from specified file

int success--1;
for(int i=O;i<r;i++)

for(int j=Oj<cj++)
if(fread(&(m[i]U]),sizeof(m[O][O]), l,f) < 1)

successO0;
return success;

#ifdef_-TURBOC_
int _Cdecl intcmp(const void* il,const void *i2)
#else
int intcmnp(const void* il,const void *i2)
#endif

if(*(int *)il > *(mnt *)i2)
return 1;

if(*(int *)il < *(mt *)i2)
return -1;

return 0;

miatrix& matrix: :operator+=(const matrix& ml)

int ij;
for(i0O;i<r&&i<ml .r~i++)

foroj=Oj<c&&j<ml .cj++)
m[i](fl+=(ml .m~i]D);

return *this;

matrix& matrix: :operator*=(const float d)

mnt ij;
for(i=O;i<r;i-H-)

foroj=Oj<cj++)
m[iJ~j]*=d;

return *this;

vec matrix: :operator*(vec& vi)
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vec temnp(vl .n--r?c:r),temnp2(vl .nr--r:c);
for(int i=0;i<((vl .n==r)?c:r);i++){

if(Vl .n,=r)
temp2=colslice(i);

else
temp2=rowslice(i);

temp.v~i]=vl *temp2;

return temp;

void matrix::initvaisconst vec& vI,const vec& v2,const float rate, const float
momentum)

int j;

forOint cj-l~i-+)

m[illh]=(mli]W]*momentum)+((vl .v[i]*v2.vojI)*rate);

ostream& operator«<(ostreamn& s~matrix& ml)
1/print a matrix

for(int i=0;i<ml .r~i--){
for(int j=Oj<ml .cj++){

s «< ml.m[i]uJ «""

S «< In";

return s;

istream& operator»>(istream& s,matrix& ml)

for(int i=O;i<ml .r;i++){
for~int j=Oj<ml .cj++){

s »> Ml.m[i]U];

return s;
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HI vecpair member functions

HI constructors

vecpair::vecpair(int n~int p,int val)

a-new ve~n~val);b=new vcc(p~val);

vecpair::vecpair(vec& A~vec& B)

m~ew vec(A~lengtho);

b=new vec(B.lengtho);

vecpair::vccpair(const vecpair& AB) HI copy-initialze

me{e(A~a-egh)
a=new vec((AB.a)->lengtho);

*b-nw ec(AB.b); >egh)

vecpair::-vecpair()
delete a; delete b;

H I destructor

vecpair& vecpair::operator=(const vecpair& vi)

*1y-*(v1 .b);
return *ths;

vecpair& vecpair::scale(vecpair& miinvecs~vecpair& maxvecs)

a->scale( *(miinvecs. a), *(maxvecs. a));
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return *this;

int vecpair::operator-(const vecpair& vi)

return (*a = *(vl.a)) && (*b = (lb)

istream& operator»>(istream& s~vecpair& vi)
II input a vector pair

s»>*(vl .a)»>*(vl .b);
return s;

ostream& operator«<(ostream& s~vecpair &vl)
HI print a vector pair

return s«<*(vl .a)«<*(vl .b)«<"\n";

II 3d matrix member functions

HI constructors

mtrx3d ::mtrx3d(int flint p,int m~float range)

int ij,kmrndtime t t;
int pct;
m3d=new float **[n];
if (range) {

time(&t);
srand((unsigned)t);

for(i=O;i<n~i--){
m3d[i]=new float*[p];

foroj=Oj<pj++){
m3d~i]j]=new float[m];

fOrqk7=;k<mik++){
if(range){
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rndmrandO;
pct=(int) (range * 100.0);
m3d[i]Wj[kJ= (floatXmd % pct) / 100.0;
if(range<O)

m3d[i]0][kJ = fabs(range) - (m3d[ijUJ[kj 2.0);

else
m3d[i]D][k]=0;

z=ni;

mtrx3d::nitrx3d(int n~int p,mnt miint irange)
(I constructor
hit value~ijk;
ni3d=new float **[n];

for(i=O~i<n~i++){
m3d[i]=new float*[p];
forojoj<pj++){

m3d~io]D=new float[m],
value=0;
forqk0;k<m~k++)(

if(irange==m){
m3d[illjllk]=value,
value++I;

else
in3d~i]51[k]0O;

r=n;

mtrx3d::mtrx3d(int n~int p,int m~float value,l1oat rarge)
H I constructor

hit ij,k,
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i-int(range);
m3d-new float **Cfl];
for(i=O~i<n~i++)(

ni3d[i]=new float*[p];

m3d[i]Ij]-new float[m];
for~k7'O;k<mik++)
m3d[i]0][k]--value;

r=n;

)=M

mtrx3d::mtrx3d(int n~int p,int inlchar *fn)
{ I constructor

int L j;
fi/mt kmrd;
I/timp tt;

m3d=new float **fn];
for(i=O;i<n~i+4-){

ni3d[i]=new float*[p];
forjooj<znj++){

m3d[i]o]=new float[m];

c=p;
z=mn;

ifstream in(fiiios::in);
in >» *this;

mtrx3d: :mtrx3d(mtrx3d& m3dl) HI copy-initializer

r--n3dl .r;
c-mi3dl.c;

z-mi3dl.z;
m3d=new float **[r];
for(int i0O;i<r~i++)f

m3d[iJ=new float*[c];
for(int j~oi<cij44){

m3d[i]Wl=new float~z];
for~int k-O;k<z~k--)
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zn3d[i]aj[k]-m73dl1.m3d[i]W1[k];

mtrx3d: :-mtrx3dO

delete []ni3d;
) I destructor

int mtrx3d::deptho (return r;)
int mtrx3d::widthO~return c;)
int nnix3d::heighto(return z;)

mtrx3d& mtrx3d: :operator=(const mtrx3d& m3d 1)

for~int i=O;i<r~i++)
for(int j=Oj<rj++)

delete m3d[i]U];
r-m3dI .r;

c--mr3dI .c;
z--m3dl .z;
m3d~new float**[r];
for(i0o;i<r~i++){

zn3d~iJ-new float*[c];
for(int j=Oj'~rj++){

ni3d[i][j]=new float[z];
for~int k=O;k<r~k++)

m3d~i]DI[k]--mi3d1 .r3d[i]jj][k];

return *this;

mtrx3d mtrx3d: :operator+(const mtrx3d& m3d I)

int i4k,
mtrx3d sum(rc,z);

for(j-Oj<rji++)

for(k0O;k<r;k++)
sum.ni3d~i]Ij][k]-mi3dl1.m3d~i]][j]k]+in3d[i]Ij][k];

return sum;
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hit mtrx3d::save(FILE *f) II save binary values of 3d matrix to specified file

hit succesrl1;
for~int i-O;i<r~i++)

for(int j-Oj'Zcj+)
for~int k0O;k<z;k-9-I)

ilfwfirite(&(m3d[iJDJ[k]),sizeof(T3dLO[OJ(OD01, 1 ,t) < 1)
success=O;

return success;

hit mtrx3d::load(FILE *f)/H load binary values of 3d matrix from specified file

hit success-1;
for(int i=O;i<r~i++)

for(int j=Oj<cj++)
fbr~int k0O;k<z~k-4)

if~fread(&(m3d[iJ]j][k]),sizeoftnm3d[O][OJ[OJ), I,f) < 1)
success=O,

return success;

float mtrx3d::getval(hit row~int colint z)

return m3d[row][col][z];

void mtrx3d::setval(int row~int col~int z~float val)

m3d~row][col][z] = val;

mtrx3d& mtrx3d: :operator+-(const mtrx3d& m3dI)

hit ij,k,
for(i=O;i<r&&i<m3dl .r;i++)

for~j=j<c&&j<m3dl .cj++)
for(k0O;k<z&&k<m3dl1.z~k++)

m3d[i]IjJ[k]+=(m3dl .m3d[iJ~j][k]);
return *this;
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mtrx3d& mtrx3d::operaor*(const float d)

int ij,k;
for(iz.Oi<r;i++)

for~Oj<c~j44)
for(k'O;k<zk-+4)

return *this;

mtrx3d& mtrxc3d::operator*=(const float d)

int ij,k;

forO=j<cj-14)
for(k=O;k<z~k++)

return *thjs;

ostream& opcrator«<(ostream& s~mtrx3d& m3dl)
I/print a 3d matrix

for~int i=O;i<m3dl .r~i++){
for~int jOj<m3dl .cj++){

for(int k0;k<m3dl .z~k++){
s «< m3dl.m3d[i](jllk] «""

s «< "\n";

return S;

istreazn& operator»>(istream& smtrx3d& m3dl)

for(int i0O;i<m3dl .r;i++)
for~int j=0j<m3dl .cj-I+)

for(int k0O;k<m3dl .c;k++)
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s» >> 3dl ni3d[i]a[j]k];

return s;
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//ATNN.H
II Header file for Adaptive Time Delay Neural Net implementation
H/Developed with Turbo C++ 3.0
H Author: Capt James Gainey, GEO-93D Last Modified: 10 Sep 93

#include"net.h"

class atnn: public net { //adaptive time delay network derived from
private:

int q; / size of hidden layer
int K; H max # of time delays (range of taus)
mtrx3d *Wl,*W2; I/synapse weight matrices

mtrx3d *dWl,*dW2; I/used to compute changes to matrices
mtrx3d *Taul,*Tau2; I/synapse time delay matrices
mtrx3d *dTaul,*dTau2; H used to compute changes to time delay matrices

matrix *a_buf,*h_buf, //buffers input to nodes over all time-delays
matrix *abuf..p,*hIbufp; //buffer for derivative of inputs to

//nodes used to compute delta tau
vec *h,*o,*d,*e,*threshl,*thresh2,*in;

int epoch, TDNN;
vec *totd,*tote;
vecpair *minvecs,*maxvecs;

float tstep,momentuminitrangelearnrate2,MSE,avgMSE,accuracy,tMSE;

/ private member functions
I/these are helper member functions

void buffer(matrix *ml,vec *v1);
void deriv(matrix& m2,matrix& ml,mtrx3d& m3dl,

const float tstep=1.Of);
vec propagate(vec& vl,mtrx3d& m3dl,mtrx3d& m3d2,matrix& ml);
vec backprop(vec& vl,vec& v2,mtrx3d& m3dl);

void initdWts(mtrx3d& m3d,matrix& ml,const vec& vi,
const float rate=1.0,const float momentum=0.0);

void initdTau(mtrx3d& m3dl,mtrx3d& m3d2,matrix& mI,const vec& v1,
const float rate=l.0);

int saveweightsO;
ill



int loadweigiitso;
float cycle(istream& s);

public:
HI public member functions

atnn(char *s); HI constructs based on <name>.DEF file
-atnno; H/ destructor

fl override pure virtual functions
int encode(vecpair& v); HI store one pattern pair
vec recall(vec &v); #I recall an output pattern given an input

float testo;
void runo;
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II NET.H
II Header file for abstract neural network base class

//To be used as parent to specific neural network implementations.
H The encode and recall methods are defined as pure virtual functions
il making this an abstract class than can never be instantiated.
//Details of encode and recall must depend on the topology
II itself. However the methods "train", "test", and "run"
H can be defined since they are substantively the same for each
/ of the classes. The constructor can be defined and will be used
H by child classes in their own constructors to instantiate
/ common elements of derived classes.

#include "vecmat.h"

H parameter class used to point to variable to be initialized
// and specify string to be used in definition file to initialize it

enum vartype {real,integerstring};
const NAMELEN=16;

typedef struct {
char name[16]; /* string to init value */
vartype type;
union {

char s[8];
float f,
int i;

} val;
) PARM;

istream& readparm(istream& sint noparms,PARM *p);
int readparms(int nPARM *p,char *name);

// NET CLASS

class net {
protected:

char *name; H string used as basename for files
int n; // size of input layer
int p; H size of output layer
float learnrate; / learning rate (defined as I where not gradual)
float decayrate; / decay (default constructed zero if not applicable)
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float tolerance;
int iters;
int cycleno;

vecpair *minvecs,*maxvecs;

H weight saving methods since we don't know topology
/ they must be pure virtual
virtual int saveweights(void) = 0;
virtual int loadweights(void) = 0;
int skipcmt(istream& s);

public:
enum parmtype {inputs,outputs,learndecay);
netOf);
net(char *s);
net(char *s,int noparmsPARM *p);
-neto;

H encode and recall and "pure virtual" which makes the
// the net class abstract
virtual int encode(vecpair& v) = 0;
virtual vec recall(vec &v) = 0; H recall an output pattern given an input
virtual float cycle(istream& s);
virtual void trainO;
int getiters(void){return iters;)
virtual float testO; H floating point value indicates percentage correct of test
virtual void runO;
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HI VECMAT.H
HI Vector and matrix classes
HI Author: Capt James Gainey, GEO-93D Last Modified: 10 Sep 93
HI Modified from BP.CPP Adam Blum (1990)

#include<stdlib.h>

#include<fcntl.h>
#include<stdio.h>
#includeczstring.h>
#include<Iimnits.h>
#include<ctype.h>
#include<niath.h>
#include<time.h>
#include<float.h>

#ifdef__TURBOC__

#include<sys\stat.h>
#include<io.h>
#include<conio.h>
#include<alloc.h>
#elif deflnedQ.ZTQJ_
#include<dos.h>

#else

#include <gi/gibh>
#include <gi/devicebh> HI for button constant ESCKEY

#endif

#include<iostream.h>
#include<fstream.h>
#include<iomanip.h>

#define max(a~b) (((a) > (b)) ? (a) :(b)) H/ C++ doesnt have min/max
#define min(a~b) (((a) < (b)) ? (a) :(b))

#include"debug.h"

double logistic(double activation);
#ifdef_-TURBOC_
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int _ Cdecl intcmp(const void* il,const void *i2);
#else
mnt intcmp(const void* il,const void *i2);
#endif

// will be changed to much higher than these values
const ROWS=64; HI number of rows (length of first pattern)
const C0LS=64; HI number of columns (length of second pattern)
const DELAYS= 64; I/number of time delays
const MAXVEC=64; HI default size of vectors

class mtrx3d;

class matrix;

class vec {
friend ostream& operator«<(ostream& s~vec& vi);
#ifdefTURBOC_
friend ostream far& operator«<(ostreamn far& s~vec far& vi);
#endif
friend class matrix;

friend class mtrx3d;
friend class bp;

friend class atnn;
friend istream& operator»>(istream& svec& vi);

intn;
float *v;

public:
vec(int size=MAXVEC,int val=0); HI constructor
'-vecO; HI destructor
vec(vec &vl); fl copy-initializer
int lengtho;
float distance(vec& A);
vec& nonmalizeo;
vec& normalizeono;
vec& randomize(float initrange=i .0);
vec& scale(vec& minvec,vec& maxvec);
float d-logistico; HI dot product of vector and complement
float maxvalo;
vec& garble(float noise);
vec& operator=(const vec& vi); HI vector assignment
vec operator+-(const vec& vi); II vector addition
vec operator+(const float d);
vec.& operator+=(const vec& vi); // vector additive-assignment
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fl supplied for completeness, but we don't use this now
vec& operator*=(float c); H/ vector multiply by constant
// vector transpose multiply needs access to v array
int operator==(const vec& vi);
float operator[](int x);
int vec::maxindexo;
vec& getstr(char *s);
void putstr(char *s);

vec operator-(const vec& vi); HI vector subtraction
vec operator-(const float d); #Isubtraction
float operator*(const vec& vI); HI dot-product
vec operator*(float c); HI multiply by constant
vec& sigmnoid(vec& thresh);
vec& set(int i,float f==O);

int load(FiLE *f);
mnt save(FILE *f);

);Iend vector class

class vecpair;

class matrix I
// we only allow access here to improve backpropagation's performance
friend ostream& operator«<(ostream& s~matrix& ml);
friend istream& operator»Q(stream& s~matrix& ml);
protected:

float **m; HI the matrix representation
mnt r~c; HI number of rows and columns

public:
// constructors
matrix(int n-=ROWS,int p=COLS,float range=O);
matrix(int n~int p,float value,float range);
matrix(int n~int p,char *fn);
matrix(const vecpair& vp);
matrix(vec& vi,vec& v2);
matrix(matrix& mlI);// copy-initializer
-matrixo;
int deptho;
int widtho;
matrix& operator=(const matrix& ml);
matrix& operator=(const vecpair& v);
matrix operator+-(const mnatrix& ml);
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vec operator*(vec& vi);
vec colsiice(int col);
vec rowslice(int row);
void insertcol(vec& v~int col);
void insertrow(vec& vint row);
int closestcol(vec& v);
int closestrow(vec& v);
mnt closestrow(vec& v,int *wins~float scaling);
int load(FILE ¶f;
int savqE(LE *f;
float getval(int row,int col);
void setval(int row,int col,float val);
void initvalsconst vec& vl,const vec& v2,

const float rate=1 .0, const float momentum=0.0);

matrix& operator+--(const matrix& ml);
matrix& operator*(const float d);
matrix& operator*=~(const float d);

H;I end matrix class

class vecpair I
friend class matrix;

friend istreamn& operator»>(istream& s~vecpair& v I);
friend ostream& operator«<(ostreamn& s~vecpair& vi);

friend matrix: :matrix(const vecpair& vp);
hit flag; ii flag signalling whether encoding succeeded

public:
vec *a;
vec *b;
vecpair(int n7-ROWS,int p=COLS,int vah=O); // constructor
vecpair(vec& A~vec& B);
vecpair(const vecpair& AB); H/ copy initializer
-vecpairO;
--e &oertr(ontvcai&v)
ýCpir operator=(const vecpair& vi);

vecpair& scale(vecpair& minvecs~vecpair& maxvecs);

class mtrx3d{
friend class matrix;

friend istream& operator»>(istream& s~mtrx3d& m3d 1);
friend ostream& operator«<(ostream& smtrx3d& m3d 1);
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protected:
float ***m3d; H/the 3D matrix representation
mnt r~c,z; HI number of rows and columns

public:
// constructors

mtrx3d(int n-=ROWS,int p=COLS,int nv=DELAYS,float rangeO0);
mtrx3d(int n~int p,int mnint irange);
mtrx3d(int n~int pOnt m~fioat value~float range);
mtrx3d(int n~int p,int m~cbar *fi);
mtrx3d(mtrx3d& m3d I); II copy-initializer
-mtrx3dO;

int deptho;
int widtho;
int heighto;
mtrx3d& operator=(const mtrx3d& m3d 1);
mtrx3d operator+(const mtrx3d& m3dl);

int load(FELE *f);
int save(FIE *0);
float getval(int row~int colint z);
void setval(int row,int colint zfloat val);

mtrx3d& operatoi+=const mtrx3d& m3dl);
mtrx3d& operator*(const float d);
nitrx3d& operator*=(const float d);

H;/end 3d matrix class
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